Contents
Idealer Kanalentzerrer
Bei einem Übertragungssystem, dessen Kanalfrequenzgang $H_{\rm K}(f)$ starke Verzerrungen hervorruft, gehen wir von folgendem Blockschaltbild (obere Grafik) und äquivalentem Ersatzschaltbild (untere Grafik) aus.
Zu diesen Darstellungen ist Folgendes anzumerken:
- Das Empfangsfilter $H_{\rm E}(f)$ wird – zumindest gedanklich – aus einem idealen Kanalentzerrer $1/H_{\rm K}(f)$ und einem Tiefpass $H_{\rm G}(f)$ zusammengesetzt. Hierfür verwenden wir in diesem Kapitel beispielhaft einen Gaußtiefpass mit der Grenzfrequenz $f_{\rm G}$.
- Verschiebt man nun den idealen Entzerrer – wiederum rein gedanklich – auf die linke Seite der Rauschadditionsstelle, so ändert sich bezüglich dem S/N–Verhältnis an der Sinke und bezüglich der Fehlerwahrscheinlichkeit nichts gegenüber dem oben gezeichneten Blockschaltbild.
- Aus dem unteren Ersatzschaltbild erkennt man, dass sich durch den Kanalfrequenzgang $H_{\rm K}(f)$ bezüglich des Detektionsnutzsignals $d_{\rm S}(t)$ – herrührend vom Sendesignal $s(t)$ – nichts ändert, wenn man diesen mit $1/H_{\rm K}(f)$ vollständig kompensiert. Das Nutzsignal hat somit die genau gleiche Form wie im Kapitel Fehlerwahrscheinlichkeit unter Berücksichtigung von Impulsinterferenzen berechnet.
- Die Degradation durch den Kanalfrequenzgang $H_{\rm K}(f)$ zeigt sich vielmehr durch eine signifikante Erhöhung der Detektionsstörleistung, also der Varianz des Signals $d_{\rm N}(t)$ – herrührend vom Störsignal $n(t)$:
- $$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} \frac{1}{|H_{\rm K}(f)|^2}\cdot |H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
- Voraussetzung für eine endliche Störleistung $\sigma_d^2$ ist, dass der Tiefpass $H_{\rm G}(f)$ das Rauschen $n(t)$ bei (sehr) hohen Frequenzen stärker abschwächt, als es vom idealen Entzerrer $1/H_{\rm K}(f)$ angehoben wird.
Anmerkung: Der Kanalfrequenzgang $H_{\rm K}(f)$ muss nach Betrag und Phase entzerrt werden, allerdings nur in einem von $H_{\rm G}(f)$ vorgegebenen eingeschränkten Frequenzbereich. Eine vollständige Phasenentzerrung ist aber nur auf Kosten einer (frequenzunabhängigen) Laufzeit möglich, die im Folgenden nicht weiter berücksichtigt wird.
$\text{Beispiel 1:}$ Wir betrachten wieder ein Binärsystem mit NRZ–Rechteckimpulsen und gaußförmigem Empfangsfilter $H_{\rm E}(f) = H_{\rm G}(f)$ mit der (normierten) Grenzfrequenz $f_\text{G, opt} \cdot T = 0.4$. Die mittlere Grafik zeigt für diesen Fall das Augendiagramm des Detektionsnutzsignals $d_{\rm S}(t)$ – also ohne Berücksichtigung des Rauschens. Dieses ist identisch mit dem im Kapitel Definition und Aussagen des Augendiagramms im Beispiel 3, rechte Grafik dargestellten Augendiagramm.
Das linke Augendiagramm ergibt sich bei idealem Kanal, also für $H_{\rm K}(f) = 1$ ⇒ $1/H_{\rm K}(f) = 1$. Es berücksichtigt das AWGN–Rauschen, das aber hier mit $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 30 \ \rm dB$ als sehr klein angenommen wurde. Für diese Konfiguration wurde per Simulation ermittelt:
- $$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 26.8\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}< 10^{-40}\hspace{0.05cm}.$$
Dagegen gilt das rechte Diagramm für ein Koaxialkabel, wobei die charakteristische Kabeldämpfung $a_\star = 40 \ \rm dB$ beträgt. Hierfür ergeben sich bei gleichem $E_{\rm B}/N_0$ deutlich ungünstigere Systemgrößen:
- $$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx -4.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 0.28\hspace{0.05cm}.$$
Dieses Ergebnis kann wie folgt interpretiert werden:
- Unter der Voraussetzung eines idealen Kanalentzerrers $1/H_{\rm K}(f)$ ergibt sich auch beim verzerrenden Kanal das gleiche „Augendiagramm ohne Rauschen” wie beim idealen Kanal $H_{\rm K}(f) = 1$ (siehe mittlere Grafik).
- Durch die Kanalentzerrung $1/H_{\rm K}(f)$ wird der Rauschanteil extrem verstärkt. Im rechten Beispiel ist wegen der starken Verzerrung eine eine ebenso starke Entzerrung über einen weiten Frequenzbereich erforderlich. Die Rauschleistung $\sigma_d^2$ ist um den Faktor $1300$ größer als bei der linken Konstellation (keine Verzerrung ⇒ keine Entzerrung). Damit ergibt sich die Fehlerwahrscheinlichkeit zu $p_{\rm S}\approx p_{\rm U}\approx 50 \%$.
- Eine akzeptable Fehlerwahrscheinlichkeit ergibt sich nur bei kleinerer Rauschleistungsdichte $N_0$. Beispielsweise erhält man mit mit $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 50 \ \rm dB$ (statt $30 \ \rm dB$) folgendes Ergebnis:
- $$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} = -4.6 +20 \approx 15.4\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 2 \cdot 10^{-9} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} \ge p_{\rm U}/4 \approx 0.5 \cdot 10^{-9}\hspace{0.05cm}.$$
Erhöhung der Rauschleistung durch lineare Entzerrung
Die Augendiagramme auf der letzten Seite dokumentieren eindrucksvoll die Erhöhung der Rauschleistung $\sigma_d^2$ bei unveränderter vertikaler Augenöffnung, wenn man den Kanalfrequenzgang $H_{\rm K}(f)$ empfangsseitig durch dessen Inverse kompensiert.
Dieses Ergebnis soll nun anhand der Rauschleistungsdichte ${\it \Phi}_{d{\rm N}}(f)$ nach dem Empfangsfilter (vor dem Entscheider) interpretiert werden, wobei folgende Einstellungen gelten:
- Der Kanal sei ein Koaxialkabel mit dem Betragsfrequenzgang
- $$|H_{\rm K}(f)| = {\rm exp}\left [- a_{\star}\cdot \sqrt{2 f T}\hspace{0.05cm} \right ]\hspace{0.2cm}{\rm mit}\hspace{0.2cm} a_{\star} = 1.7\,\,{\rm Np}\hspace{0.2cm} ({\rm entsprechend} \hspace{0.2cm} 15\,\,{\rm dB}) \hspace{0.05cm}.$$
- Der ideale Kanalentzerrer $1/H_{\rm K}(f)$ kompensiert den Kanalfrequenzgang vollständig. Über die Realisierung der Dämpfungs– und Phasenentzerrung wird hier keine Aussage getroffen.
- Zur Rauschleistungsbegrenzung wird ein Gaußtiefpass eingesetzt:
- $$|H_{\rm G}(f)| = {\rm exp}\left [- \pi \cdot \left (\frac{f }{2 f_{\rm G}}\right )^2 \right ]\hspace{0.2cm}{\rm mit}\hspace{0.2cm} f_{\rm G} = 0.8/T \hspace{0.2cm} {\rm bzw.} \hspace{0.2cm} f_{\rm G} = 0.4/T \hspace{0.05cm}.$$
Damit gilt für die Rauschleistungsdichte vor dem Entscheider:
- $${\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot \frac{|H_{\rm G }(f)|^2}{|H_{\rm K}(f)|^2} = \frac{N_0}{2} \cdot {\rm exp}\left [2 \cdot a_{\star}\cdot \sqrt{2 f T} - {\pi}/{2} \cdot \left ({f }/{f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$
Dieser Verlauf ist nachfolgend für die beiden (normierten) Grenzfrequenzen $f_\text{G} \cdot T = 0.8$ (links) bzw. $f_\text{G} \cdot T = 0.4$ (rechts) dargestellt. Beachten Sie, dass hier aus Darstellungsgründen die charakteristische Kabeldämpfung mit $a_\star = 15 \ \rm dB$ (entsprechend $1.7 \ \rm Np$) deutlich kleiner gewählt ist als beim rechten Augendiagramm auf der letzten Seite (gültig für $a_\star = 40 \ \rm dB$).
Betrachten wir zunächst die linke Grafik für die (normierte) Grenzfrequenz $f_\text{G} \cdot T = 0.8$, die nach den Berechnungen im letzten Kapitel für den idealen Kanal ⇒ $H_{\rm K}(f) = 1$ das Optimum darstellt.
- Gelb hinterlegt ist die konstante Rauschleistungsdichte $N_0/2$ am Empfängereingang. Bei idealem Kanal wird diese durch das gaußförmige Empfangsfilter $H_{\rm E}(f) = H_{\rm G}(f)$ begrenzt und ergibt die Detektionsrauschleistung $\sigma_d^2$ (in der Grafik durch die blaue Fläche gekennzeichnet).
- Werden – wie bei leitungsgebundener Übertragung üblich – höhere Frequenzen stark gedämpft, so steigt $|H_{\rm E}(f)| = |H_{\rm G}(f)|/|H_{\rm K}(f)|$ aufgrund des idealen Kanalentzerrers sehr stark an, bevor für $f \cdot T \ge 0.6$ (nur gültig für $a_\star = 15 \ \rm dB$ und $f_\text{G} \cdot T = 0.8$) der dämpfende Einfluss des Gaußfilters wirksam wird.
- Die Rauschleistung $\sigma_d^2$ ist nun gleich der Fläche unter der roten Kurve, die etwa um den Faktor $28$ größer ist als die blaue Fläche. Die Auswirkungen dieser unterschiedlichen Rauschleistungen erkennt man auch in den Augendiagrammen auf der letzten Seite, allerdings für $a_\star = 40 \ \rm dB$.
Die rechte Grafik zeigt die Rauschleistungsdichte ${\it \Phi}_{d{\rm N}}(f)$ für die normierte Grenzfrequenz $f_\text{G} \cdot T = 0.4$. Hier wird die Rauschleistung durch den idealen Kanalentzerrer nur noch um den Faktor $9$ vergrößert (Verhältnis zwischen der Fläche unter der roten Kurve und der blauen Fläche).
$\text{Fazit:}$ Aus obiger Grafik und den bisherigen Erläuterungen geht bereits hervor, dass bei verzerrendem Kanal ⇒ $H_{\rm K}(f) \ne 1$ die Grenzfrequenz $f_\text{G} \cdot T = 0.8$ des Gaußtiefpasses $H_{\rm G}(f)$ nach dem idealen Kanalentzerrer $1/H_{\rm K}(f)$ nicht mehr optimal sein wird.
Optimierung der Grenzfrequenz
Die Grafik zeigt die Störabstände in Abhängigkeit der Grenzfrequenz $f_{\rm G}$ des gaußförmigen Gesamtfrequenzgangs $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$. Dieses Bild gilt für
- einen koaxialen Übertragungskanal mit der charakteristischen Kabeldämpfung $a_\star = 15 \ \rm dB$,
- AWGN–Rauschen mit $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$, wobei $E_{\rm B} = s_0^2 \cdot T$ zu setzen ist ⇒ NRZ–Rechteckimpulse.
(#) Die gelb gefüllten Kreise zeigen die dB–Werte für $10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ ⇒ „mittleres” Detektions–SNR (als Maß für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$).
(#) Die blau umrandeten Quadrate zeigen die dB–Werte für $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ ⇒ „ungünstigstes” SNR (als Maß für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U}$).
Man erkennt aus dieser Darstellung und durch Vergleich mit der entsprechenden Grafik im letzten Kapitel, die für $H_{\rm K}(f) = 1$ und $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$ gegolten hat:
- Auch bei stark verzerrendem Kanal ist $\rho_{\rm U}$ eine geeignete untere Schranke für $\rho_d$. Das heißt, es ist stets $\rho_{d} \ge \rho_{\rm U}$ und dementsprechend $p_{\rm U} \ge p_{\rm S} $ eine sinnvolle obere Schranke für $p_{\rm S}$.
- Bei der betrachteten Kabeldämpfung $a_\star = 15 \ \rm dB$ ist die Grenzfrequenz $f_\text{G} \cdot T \approx 0.55$ optimal und es gilt $\ddot{o}/s_0 \approx 1.327$ sowie $\sigma_d/s_0 \approx 0.106$. Daraus ergeben sich der (ungünstigste) Störabstand $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 dB$ und die Worst–Case–Fehlerwahrscheinlichkeit $p_{\rm U} \approx 2 \cdot 10^{-9}.$
- Eine kleinere Grenzfrequenz würde zu einer deutlich kleineren Augenöffnung führen, ohne dass dadurch auch $\sigma_d$ gleichermaßen verkleinert würde. Beispielsweise gilt mit $f_\text{G} \cdot T = 0.4$:
- $$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 14.1\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
- Ist die Grenzfrequenz $f_\text{G}$ zu groß, so wird das Rauschen weniger effektiv begrenzt. Beispielsweise lauten die Werte für die Grenzfrequenz $f_\text{G} \cdot T =0.8$:
- $$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 14.2\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 1.7 \cdot 10^{-7}\hspace{0.05cm}.$$
- Die optimalen Werte sind mit $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{d} \approx 16.2 \ \rm dB$ und $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 dB$ ist deutlich ausgeprägter als bei idealem Kanal. Bei einem Vergleich der Störabstände ist allerdings zu berücksichtigen, dass hier $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$ zugrunde liegt; in der entsprechenden Grafik für den idealen Kanal wurde dagegen von $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$ ausgegangen.
Optimale Grenzfrequenz in Abhängigkeit der Kabeldämpfung
Wir betrachten weiter
- ein Binärsystem mit NRZ–Sendeimpulsen ⇒ $E_{\rm B} = s_0^2 \cdot T$,
- einen Koaxialkabel $H_{\rm K}(f)$ mit charakteristischer Dämpfung $a_\star$,
- einen Gauß–Gesamtfrequenzgang $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.
Die blauen Kreise (linke Achsenbeschriftung) markieren die optimale Grenzfrequenzen $f_\text{G, opt}$ für die jeweilige Kabeldämpfung $a_\star$.
Zusätzlich ist in der Grafik mit roten Quadraten der Systemwirkungsgrad (bei Spitzenwertbegrenzung) $\eta$ dargestellt, der das Verhältnis des mit der betrachteten Konfiguration erreichbaren SNR $\rho_{d}$ zum maximal möglichen S/N-Verhältnis $\rho_{d, \ {\rm max}}$ angibt. Ersetzt man $\rho_d$ durch $\rho_{\rm U}$, also $p_{\rm S}$ durch $p_{\rm U}$, so kann der Systemwirkungsgrad wie folgt dargestellt werden:
- $$\eta = \eta_{\rm A}=\frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm} A}}}= \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$
Man erkennt aus der Anordnung der blauen Kreise:
- Die optimale Grenzfrequenz $f_\text{G, opt}$ hängt signifikant ab von der Stärke der Verzerrungen des Koaxialkabels, genauer gesagt: ausschließlich von der charakteristischen Kabeldämpfung $a_\star$ bei der halben Bitrate.
- Je größer die charakteristische Kabeldämpfung $a_\star$ ist und damit der Rauscheinfluss, um so niedriger ist die optimale Grenzfrequenz $f_\text{G, opt}$.
- Allerdings ist stets $f_\text{G, opt} > 0.27/T$. Andernfalls würde sich ein geschlossenes Auge ergeben, gleichbedeutend mit der „Worst–case”–Fehlerwahrscheinlichkeit $p_{\rm U} = 0.5$.
Diskutieren wir nun die Abhängigkeit des Systemwirkungsgrads $\eta$ (rote Quadrate) von der charakteristischen Kabeldämpfung $a_\star$. Die Ordinate erstreckt sich hier von oben nach unten:
Wie nun an einigen Zahlenbeispielen verdeutlicht werden soll, vermeidet die Darstellung $\eta = \eta(a_\star)$ einige Probleme, die sich aus dem großen Wertebereich von S/N–Verhältnissen ergeben:
- Der Ordinatenwert $10 \cdot {\rm lg}\hspace{0.1cm} \eta = \eta(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$ sagt aus, dass der bei idealem Kanal bestmögliche Gaußtiefpass mit Grenzfrequenz $f_\text{G} \cdot T = 0.8$ um $1.4 \ \rm dB$ schlechter ist als der optimale (Matched-Filter-) Empfänger.
- Gehen wir von idealem Kanal $(a_\star = 0 \ \rm dB)$ und $10 \cdot {\rm lg}\hspace{0.1cm} (E_{\rm B}/N_0) = 10 \ \rm dB$ aus, so besagt die obige Gleichung auch, dass diese Konfiguration zu folgender (worst-case) Fehlerwahrscheinlichkeit führen wird:
- $$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} = 10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx \approx 10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
- Soll diese (ungünstigste) Fehlerwahrscheinlichkeit pU = 7 · 10 –5 ⇒ 10 · lg ρU = 11.6 dB bei einem Kanal mit der charakteristischen Kabeldämpfung a∗ = 80 dB nicht überschritten werden, so muss demnach für das Verhältnis EB/N0 gelten:
- \[10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} \ge 11.6\,{\rm dB} \hspace{0.1cm}-3\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}(-78.2)\,{\rm dB}= 86.8\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}{E_{\rm B}}/{N_0}\approx 5 \cdot 10^{8}\hspace{0.05cm}.\]
- Um dies zu erreichen, muss allerdings die Grenzfrequenz des Gaußtiefpasses entsprechend den blauen Kreisen in obiger Gleichung auf fG = 0.33/T herabgesetzt werden.
Aufgaben zum Kapitel
A3.3 Rauschen bei Kanalentzerrung
Zusatzaufgaben:3.3 Koaxialkabelsystem - Optimierung