Exercise 3.3Z: Optimization of a Coaxial Cable System
Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:
- Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie $E_{\rm B} = s_0^2 \cdot T$.
- Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung $a_* = 40 \, {\rm dB}$.
- Es liegt AWGN–Rauschen mit der Rauschleistungsdichte $N_0 = 0.0001 \cdot E_{\rm B}$ vor.
- Der Empfängerfrequenzgang $H_{\rm E}(f)$ beinhaltet einen idealen Kanalentzerrer $H_{\rm K}^{\rm -1}(f)$ und einen Gaußtiefpass $H_{\rm G}(f)$ mit Grenzfrequenz $f_{\rm G}$ zur Rauschleistungsbegrenzung.
Die Tabelle zeigt die Augenöffnung $\ddot{o}(T_{\rm D})$ sowie den Detektionsrauscheffektivwert $\sigma_{\rm d}$ – jeweils normiert auf die Sendeamplitude $s_0$ – für verschiedene Grenzfrequenzen $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit
- $$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
möglichst klein ist. Die ungünstigste Fehlerwahrscheinlichkeit stellt eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ dar. Für $f_{\rm G} \cdot T ≥ 0.4$ kann auch eine untere Schranke angegeben werden:
- $${1}/{4} \cdot p_{\rm U}\le p_{\rm S}\le p_{\rm U} \hspace{0.05cm}.$$
Hinweis:
- Die Aufgabe gehört zum Themengebiet von Berücksichtigung von Kanalverzerrungen und Entzerrung.
- Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul nutzen:
Fragebogen
Musterlösung
(2) Mit dem Ergebnis aus a) erhält man weiter:
- $$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}$$
- $$\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left ( {3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
(3) Mit dem gegebenen $10 \cdot {\rm lg} \, E_B/N_0 = 10^4$ hat sich der ungünstigste Störabstand zu $10 \cdot {\rm lg} \, \rho_U \approx 5.41 \, {\rm dB}$ ergeben. Für die ungünstigste Fehlerwahrscheinlichkeit $p_U = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_U > 13.55 \, {\rm dB}$ sein. Dies erreicht man, indem man den Quotienten $E_B/N0$ entsprechend erhöht:
- $$10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}$$
- $$\Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline { = 1.53 \cdot 10^{-5}} \hspace{0.05cm}.$$
(4) Die obere Schranke für $p_S$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_U = \underline {10^{\rm -6}}$. Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.