Exercise 3.8Z: Optimal Detection Time for DFE

From LNTwww

Tabelle der Grundimpulswerte

Wir betrachten wie in der Aufgabe A3.8 das bipolare Binärsystem mit Entscheidungsrückkopplung. Man nennt dies englisch Decision Feedback Equalization (DFE).

Der vorentzerrte Grundimpuls $g_d(t)$ am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz $f_{\rm G} \cdot T = 0.25$.

In der Tabelle sind die auf $s_0$ normierten Abtastwerte von $g_d(t)$ angegeben. Auf der Angabenseite zu Aufgabe A3.8 ist $g_d(t)$ skizziert.

Bei der idealen DFE wird ein Kompensationsimpuls $g_w(t)$ gebildet, der für alle Zeiten $t ≥ T_{\rm D} + T_{\rm V}$ genau gleich dem Eingangsimpuls $g_d(t)$ ist, so dass für den korrigierten Grundimpuls gilt:

$$g_k(t) \ = \ g_d(t) - g_w(t) =$$
$$\ = \\left\{ \begin{array}{c} g_d(t) $$
$$ 0 $$
$$ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}$$
$$ {\rm{f\ddot{u}r}} $$
$$\end{array} \begin{array}{*{20}c} t < T_{\rm D} + T_{\rm V}, $$
$$ t \ge T_{\rm D} + T_{\rm V}, $$
$$\end{array}$$
$$g_k(t) \ = \ g_d(t) - g_w(t) =\\ \ = \ \left\{ \begin{array}{c} g_d(t) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c} t < T_{\rm D} + T_{\rm V}, \\ t \ge T_{\rm D} + T_{\rm V}, \\ \end{array}$$

Hierbei bezeichnet $T_{\rm D}$ den Detektionszeitpunkt, der eine optimierbare Systemgröße darstellt. $T_{\rm D} = 0$ bedeutet eine Symboldetektion in Impulsmitte.

Bei einem System mit DFE ist jedoch $g_k(t)$ stark unsymmetrisch, so dass ein Detektionszeitpunkt $T_{\rm D} < 0$ günstiger ist. Die Verzögerungszeit $T_{\rm V} = T/2$ gibt an, dass die DFE erst eine halbe Symboldauer nach der Detektion wirksam wird. Zur Lösung dieser Aufgabe ist $T_{\rm V}$ allerdings nicht relevant.


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)