Exercise 4.4: Maximum–a–posteriori and Maximum–Likelihood
From LNTwww
Zur Verdeutlichung von MAP– und ML–Entscheidung konstruieren wir nun ein sehr einfaches Beispiel mit nur zwei möglichen Nachrichten $m_0 = 0$ und $m_1 = 1$, die durch die Signalwerte $s_0$ bzw. $s_1$ dargestellt werden:
- $$s \hspace{-0.15cm} \ = \ \hspace{-0.15cm}s_0 = +1 \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm}m = m_0 = 0\hspace{0.05cm},$$
- $$s \hspace{-0.15cm} \ = \ \hspace{-0.15cm}s_1 = -1 \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm}m = m_1 = 1\hspace{0.05cm}.$$
Die Auftrittswahrscheinlichkeiten sind:
- $${\rm Pr}(s = s_0) = 0.75,\hspace{0.2cm}{\rm Pr}(s = s_1) = 0.25 \hspace{0.05cm}.$$
Das Empfangssignal kann – warum auch immer – drei verschiedene Werte annehmen, nämlich
- $$r = +1,\hspace{0.2cm}r = 0,\hspace{0.2cm}r = -1 \hspace{0.05cm}.$$
Die bedingten Kanalwahrscheinlichkeiten können der Grafik entnommen werden.
Nach der Übertragung soll die gesendete Nachricht durch einen optimalen Empfänger geschätzt werden. Zur Verfügung stehen:
- der Maximum–Likelihood–Empfänger (ML–Empfänger), der die Auftrittswahrscheinlichkeiten ${\rm Pr}(s = s_i)$ nicht kennt, mit der Entscheidungsregel:
- $$\hat{m}_{\rm ML} = {\rm arg} \max_i \hspace{0.1cm} [ p_{r |s } \hspace{0.05cm} (\rho |s_i ) ]\hspace{0.05cm},$$
- der Maximum–a–posteriori–Empfänger (MAP–Empfänger); dieser berücksichtigt bei seinem Entscheidungsprozess auch die Symbolwahrscheinlichkeiten der Quelle:
- $$\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( s = s_i) \cdot p_{r |s } \hspace{0.05cm} (\rho |s_i ) ]\hspace{0.05cm}.$$
Hinweise:
- Diese Aufgabe bezieht sich auf das Kapitel Optimale Empfängerstrategien sowie das Kapitel Struktur des optimalen Empfängers des vorliegenden Buches.
- Die notwendigen statistischen Grundlagen finden Sie im Kapitel Statistische Abhängigkeit und Unabhängigkeit des Buches „Stochastische Signaltheorie”.
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)
(6)