Exercise 2.8: Code Comparison: Binary, AMI and 4B3T
From LNTwww
In der Grafik sind drei Augendiagramme (ohne Rauschen) dargestellt, wobei jeweils ein rechteckförmiger NRZ–Sendegrundimpuls und für das Gesamtsystem eine Cosinus–Rolloff–Charakteristik mit Rolloff–Faktor $r = 0.8$ zugrunde liegen. Für die einzelnen Augendiagramme ist weiterhin vorausgesetzt (von oben nach unten):
- der redundanzfreie Binärcode,
- der AMI–Code (ca. $37 \%$ Redundanz),
- der 4B3T–Code (ca. $16 \%$ Redundanz).
Weiter kann von folgenden Voraussetzungen ausgegangen werden:
- Es liegt AWGN–Rauschen vor, wobei gilt:
- $$10 \cdot {\rm lg}\hspace{0.1cm} {s_0^2 \cdot T}/{N_0} = 10\, {\rm dB}\hspace{0.05cm}.$$
- Die Detektionsstörleistung hat beim Binärsystem folgenden Wert (wegen des nicht optimalen Empfangsfilters $12 \%$–Aufschlag):
- $$\sigma_d^2 = 1.12 \cdot {N_0}/({2 T})\hspace{0.05cm}.$$
- Die Symbolfehlerwahrscheinlichkeit des Binärsystems lautet:
- $$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right) \hspace{0.05cm}.$$
- Dagegen gilt für die beiden redundanten Ternärsysteme:
- $$_{\rm S} = {4}/{3} \cdot {\rm Q} \left( s_0/(2 \sigma_d) \right) \hspace{0.05cm}.$$
- Zu berücksichtigen ist dabei, dass sich der Rauscheffektivwert $\sigma_{d}$ gegenüber dem redundanzfreien Binärsystem durchaus verändern kann.
Hinweis:
Die Aufgabe bezieht sich auf Blockweise Codierung mit 4B3T-Codes und Symbolweise Codierung mit Pseudoternärcodes des vorliegenden Buches. Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul verwenden: Komplementäre Gaußsche Fehlerfunktionen
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)
(6)