Exercise 5.7: McCullough and Gilbert-Elliott Parameters

From LNTwww
Revision as of 14:27, 14 November 2017 by Hussain (talk | contribs)

GE– und MC–Modell

In Aufgabe A5.6 und Aufgabe Z5.6 wurden jeweils das GE–Modell mit den Parameterwerten

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,$$
$$ {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$

genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird $p(\rm B|G)$ anstelle von $\rm Pr(B|G)$ geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen.

Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit „$q$” anstelle von „$p$” bezeichnet. Beispielsweise bezeichnet beim MC–Modell $q\rm (B|G)$ die Übergangswahrscheinlichkeit von Zustand „$\rm G$” in den Zustand „$\rm B$” unter der Voraussetzung, dass im Zustand „$\rm G$” gerade ein Fehler aufgetreten ist. Der GE–Parameter $p \rm (B|G)$ kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.

Die Parameter des GE–Modells ⇒ $p_{\rm G}, p_{\rm B}, p({\rm B|G}), p({\rm G|B})$ können so in die entsprechenden MC–Parameter $q_{\rm G}, q_{\rm B}, q({\rm B|G}$ und $q({\rm G|B})$ umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge.

Die Umrechnungsgleichungen lauten:

$$q_{\rm G} \hspace{2cm} \ = \ \hspace{-0.1cm} 1-\beta_{\rm G}\hspace{0.05cm}, \hspace{0.2cm}q_{\rm B} = 1-\beta_{\rm B}\hspace{0.05cm},$$
$$q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot[{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot q_{\rm G}} \hspace{0.05cm},$$
$$\hspace{0.2cm}q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$

Hierbei sind die folgenden Hilfsgrößen verwendet:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)