Exercise 5.2: Error Correlation Function

From LNTwww
Revision as of 16:27, 29 November 2017 by Guenter (talk | contribs)

Wahrscheinlichkeiten der Fehlerabstände und Fehlerkorrelationsfunktion

Zur Charakterisierung von digitalen Kanalmodellen verwendet man unter Anderem

  • die Fehlerkorrelationsfunktion (FKF)
$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + k}]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  • die Fehlerabstandswahrscheinlichkeiten
$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge 1\hspace{0.05cm}.$$

Hierbei bezeichnen

  • $〈e_{\rm \nu}〉$ die Fehlerfolge mit $e_{\rm \nu} ∈ \{0, 1\}$, und
  • $a$ den Fehlerabstand.


Zwei direkt aufeinanderfolgende Bitfehler werden somit durch den Fehlerabstand $a = 1$ gekennzeichnet.

Die Tabelle zeigt beispielhafte Werte der Fehlerabstandswahrscheinlichkeiten ${\rm Pr}(a = k)$ sowie der Fehlerkorrelationsfunktion $\varphi_e(k)$. Einige Angaben fehlen in der Tabelle. Diese Werte sollen aus den gegebenen Werten berechnet werden.


Hinweise:


Fragebogen

1

Welcher Wert ergibt sich für die mittlere Fehlerwahrscheinlichkeit?

$p_{\rm M} \ = \ $

2

Welcher Wert ergibt sich für den mittleren Fehlerabstand?

${\rm E}[a] \ = \ $

3

Berechnen Sie den Wert der Fehlerkorrelationsfunktion (FKF) für $k = 1$.

$\varphi_e(k = 1) \ = \ $

4

Welche Näherung gilt für die Wahrscheinlichkeit des Fehlerabstands $a = 2$?

${\rm Pr}(a = 2) \ = \ $


Musterlösung

(1)  Die mittlere Fehlerwahrscheinlichkeit ist gleich dem FKF–Wert für $k = 0$. Wegen $e_{\nu} ∈ \{0, 1\}$ gilt nämlich:

$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} \hspace{0.05cm}.$$


(2)  Der mittlere Fehlerabstand ist gleich dem Kehrwert der mittleren Fehlerwahrscheinlichkeit. Das heißt: $E[a] = 1/p_{\rm M} \ \underline {= 10}$.


(3)  Nach der Definitionsgleichung und dem Satz von Bayes erhält man folgendes Ergebnis:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot (e_{\nu + 1}=1)]=$$
$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(e_{\nu + 1}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm Pr}(e_{\nu} = 1) \hspace{0.05cm}.$$

Die erste Wahrscheinlichkeits ist gleich ${\rm Pr}(a = 1)$ und die zweite Wahrscheinlichkeit ist gleich $p_{\rm M}$:

$$\varphi_{e}(k = 1) = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} \hspace{0.05cm}.$$


(4)  Der FKF–Wert $\varphi_e(k = 2)$ kann (näherungsweise) folgendermaßen interpretiert werden:

$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M}$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k = 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$

Diese Wahrscheinlichkeit setzt sich zusammen aus den beiden Möglichkeiten „Zum Zeitpunkt $\nu+1$ tritt ein Fehler auf” sowie „Zum Zeitpunkt $\nu+1$ gibt es keinen Fehler”:

$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$

Bei der Rechnung wurde davon ausgegangen, dass die einzelnen Fehlerabstände statistisch voneinander unabhängig sind. Diese Annahme gilt allerdings nur für eine besondere Klasse von Kanalmodellen, die man als „erneuernd” bezeichnet. Das hier betrachtete Bündelfehlermodell erfüllt diese Bedingung nicht. Die tatsächliche Wahrscheinlichkeit ${\rm Pr}(a = 2) = 0.1675$ weicht deshalb vom hier berechneten Wert ($0.1715$) geringfügig ab.