Exercise 4.3Z: Conversions of L-value and S-value

From LNTwww
Revision as of 17:49, 7 December 2017 by Hussain (talk | contribs)

Funktion $y = \tanh {(x)}$ in Tabellenform

Wir gehen von einer binären Zufallsgröße $x ∈ \{+1, \, –1\}$ mit folgenden Wahrscheinlichkeiten aus:

$${\rm Pr}(x =+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} p\hspace{0.05cm},$$
$${\rm Pr}(x =-1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} q = 1-p\hspace{0.05cm}.$$

Die „Zuverlässigkeit” des Symbols $x$ kann ausgedrückt werden

  • durch den $L$–Wert entsprechend der Definition
$$L(x) = {\rm ln} \hspace{0.2cm} \frac{p}{q} = \frac{p}{1 - p}\hspace{0.05cm} \hspace{0.05cm},$$
  • durch den so genannten $S$–Wert
$$S(x) = p- q \hspace{0.05cm}.$$

Den Begriff „$S$–Wert” haben wir kreiert, um die folgenden Fragen griffiger formulieren zu können. In der Literatur findet man hierfür manchmal die Bezeichung „Soft Bit”.

Wie in Teilaufgabe (1) gezeigt werden soll, können $L(x)$ und $S(x)$ ineinander umgerechnet werden.

Anschließend sollen diese Funktionen zur Berechnung der folgenden Größen berechnet werden, wobei stets von der Codelänge $n = 3$ ausgegangen wird:

  • der extrinsische $L$–Wert für das dritte Symbol  ⇒  $L_{\rm E}(x_3)$,
  • der Aposteriori–$L$–Wert für das dritte Symbol  ⇒  $L_{\rm APP}(x_3)$.


Die Berechnung soll für folgende Codes erfolgen:

  • dem Wiederholungscode  ⇒  RC (3, 1) mit der Nebenbedingung $\sign {(x_1)} = \sign {(x_2)} = \sign {(x_3)}$,
  • dem Single Parity–check Code  ⇒  SPC (3, 2) mit der Nebenbedingung $x_1 \cdot x_2 \cdot x_3 = +1$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Soft–in Soft–out Decoder.
  • Zur Lösung benötigen Sie den Tangens Hyperbolikus entsprechend folgender Definition:
$$y = {\rm tanh}(x) = \frac{{\rm e}^{+x/2} - {\rm e}^{-x/2}}{{\rm e}^{+x/2} + {\rm e}^{-x/2}} = \frac{1 - {\rm e}^{-x}}{1 + {\rm e}^{-x}} \hspace{0.05cm}.$$
  1. Diese Funktion ist oben in Tabellenform angegeben.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)