Exercise 4.13: Decoding LDPC Codes

From LNTwww
Revision as of 09:36, 13 December 2017 by Hussain (talk | contribs)

Gegebene LDPC–Prüfmatrix

Die Aufgabe behandelt die Decodierung von LDPC–Codes und den Message–passing Algorithmus gemäß Kapitel 4.4.

Ausgangspunkt ist die dargestellte $9 × 12$–Prüfmatrix $\mathbf{H}$, die zu Beginn der Aufgabe als Tanner–Graph dargestellt werden soll. Dabei ist anzumerken:

  • Die Variable Nodes (abgekürzt VNs) $V_i$ bezeichnen die $n$ Codewortbits.
  • Die Check Nodes (abgekürzt CNs) $C_j$ stehen für die $m$ Prüfgleichungen.
  • Eine Verbindung zwischen $V_i$ und $C_j$ zeigt an, dass das Matrixelement $h_{j, i}$ der Prüfmatrix $\mathbf{H}$ (in Zeile $j$, Spalte $i$) gleich $1$ ist. Für $h_{j,i} = 0$ gibt es keine Verbindung zwischen $V_i$ und $C_j$.
  • Als die Nachbarn $N(V_i)$ von $V_i$ bezeichnet man die Menge aller Check Nodes $C_j$, die mit $V_i$ im Tanner–Graphen verbunden sind. Entsprechend gehören zu $N(C_j)$ alle Variable Nodes $V_i$ mit einer Verbindung zu $C_j$.


Die Decodierung erfolgt abwechselnd bezüglich

  • den Variable Nodes  ⇒  Variable Nodes Decoder (VND), und
  • den Check Nodes  ⇒  Check Nodes Decoder (CND).


Hierauf wird in den Teilaufgaben (5) und (6) Bezug genommen.

Hinweis:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)