Exercise 2.4: DSL/DMT with IDFT/DFT
Eine Realisierungsform des DMT–Verfahrens (steht für Discrete Multitone Transmission) basiert auf der Inversen Diskreten Fouriertransformation (IDFT) sowie der DFT am Empfänger.
Beim Sender werden $N/2–1$ Nutzer durch die komplexen Spektralkoeffizienten $D_{k} (k = 1, ..., N/2–1)$ den Frequenzen $f_{k} = k \cdot f_{0}$ zugewiesen, wobei die Grundfrequenz $f_{0}$ der Kehrwert der Symboldauer $T$ ist.
Es gilt $D_{k} \in {±1 ± j}$, falls ein Kanal belegt ist, im anderen Fall $D_{k} = 0$. Die Koeffizienten $D_{0}$ und $D_{N/2}$ sind stets 0. Die obersten Koeffizienten werden konjugiert–komplex belegt:
- $$D_k = D_{N-k}^{\star},\hspace{0.2cm}k = N/2 +1,\hspace{0.05cm} ... \hspace{0.05cm}, N-1 \hspace{0.05cm}.$$
Dadurch wird sicher gestellt, dass das Zeitsignal $s(t)$ stets reell ist. Die Abtastwerte $s_{0}, ... , s_{N–1}$ dieses Signals werden dabei durch die IDFT gebildet, wobei der zeitliche Abstand zweier Abtastwerte $\Delta t = T/N = 1/(N \cdot f_{0})$ beträgt. Durch Tiefpassfilterung erhält man das zeitkontinuierliche Signal.
Bei ADSL/DMT gilt $N = 512$ und $f_{0} = 4.3125 \ \rm kHz$. In dem hier betrachteten Beispiel seien die Parameter zur Vereinfachung wie folgt angenommen:
- $$N = 16,\hspace{0.2cm}\Delta t = 10\,{\rm \mu s} \hspace{0.05cm}.$$
In der obigen Tabelle sind für drei verschiedene $D_{k}$–Belegungen die Abtastwerte $s_{l} (l = 0, ... , 15)$ nach der IDFT angegeben. Gesucht sind die zugehörigen Spektralkoeffizienten $D_{k} (k = 0, ... , 15).$
Hinweis:
Die Aufgabe gehört zum Kapitel xDSL als Übertragungstechnik. Das Sendesignal hat bei DSL die Form
- $$s(t) = \sum_{k = 1}^{K} \left [ 2 \cdot {\rm Re}\{D_k\} \cdot \cos(2\pi \cdot k f_0 \cdot t ) - 2 \cdot {\rm Im}\{D_k\} \cdot \sin(2\pi \cdot k f_0 \cdot t )\right ] \hspace{0.05cm}.$$
Beachten Sie auch die folgende trigonometrische Beziehung:
- $$\cos(2\pi f_0 t + \phi_0) = \cos( \phi_0) \cdot \cos(2\pi f_0 t ) - \sin( \phi_0) \cdot \sin(2\pi f_0 t ) \hspace{0.05cm}.$$
Man bezeichnet als den Crestfaktor (oder den Scheitelfaktor) eines Signals das Verhältnis von Maximalwert und Effektivwert.
Hinweis:
Ihre Lösung können Sie mit dem folgenden Flash–Modul überprüfen:
Diskrete Fouriertransformation
Fragebogen
Musterlösung
(2)
(3)
(4)
(5)
(6)
(7)
(8)