Exercise 3.4Z: Trapezoid, Rectangle and Triangle
From LNTwww
Revision as of 18:20, 1 January 2018 by Guenter (talk | contribs) (Guenter verschob die Seite 3.4Z Trapez, Rechteck und Dreieck nach Aufgabe 3.4Z: Trapez, Rechteck und Dreieck)
Betrachtet werden drei unterschiedliche Impulsformen. Der Impuls ${x(t)}$ ist trapezförmig. Für $| t | < t_1 = 4 \,\text{ms}$ ist der Zeitverlauf konstant ${A} = 1\, \text{V}$. Danach fällt ${x(t)}$ bis zum Zeitpunkt $t_2 = 6\, \text{ms}$ linear bis auf den Wert $0$ ab.
Mit den beiden abgeleiteten Systemgrößen, nämlich
- der äquivalenten Impulsdauer
- $$\Delta t = t_1 + t_2$$
- und dem so genannten Rolloff-Faktor
- $$r_t = \frac{t_2 - t_1 }{t_2 + t_1 }$$
lautet die Spektralfunktion des Trapezimpulses:
- $$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi} \cdot \Delta t \cdot f} ) \cdot \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot f} ).$$
Weiter sind im Bild rechts noch der Rechteckimpuls ${r(t)}$ und der Dreieckimpuls ${d(t)}$ dargestellt, die beide als Grenzfälle des Trapezimpulses ${x(t)}$ interpretiert werden können.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können Ihre Ergebnisse anhand zweier Interaktionsmodule überprüfen:
Fragebogen
Musterlösung
1. Die äquivalente Impulsdauer ist $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$ und der Rolloff-Faktor $r_t = 2/10 \;\underline{= 0.2}$.
2. Richtig sind die Lösungsvorschläge 2 und 3:
- Der Spektralwert bei $f = 0$ beträgt $A \cdot \Delta t = 10 \,\text{mV/Hz}$.
- Da ${X(f)}$ reell ist und sowohl positive als auch negative Werte annehmen kann, sind nur die zwei Phasenwerte $0$ und $\pi$ möglich.
- Nullstellen gibt es aufgrund der ersten si-Funktion bei allen Vielfachen von $1/\Delta t = 100\, \text{Hz}$.
- Die zweite si-Funktion führt zu Nulldurchgängen im Abstand $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$. Diese fallen exakt mit den Nullstellen der ersten si-Funktion zusammen.
3. Alle Lösungsvorschläge sind zutreffend:
- Mit der äquivalenten Impulsdauer $\Delta t = 10 \,\text{ms}$ und dem Rolloff-Faktor $r_t = 0$ erhält man: $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
4. Hier sind die Lösungsvorschläge 1 und 3 zutreffend:
- Beim Dreieckimpuls ist der Rolloff-Faktor $r_t = 1$.
- Die äquivalente Impulsdauer ist ebenfalls $\Delta t = 10 \,\text{ms}$. Daraus folgt $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
- Da ${D(f)}$ nicht negativ werden kann, ist die Phase $[{\rm arc} \; {D(f)}]$ stets $0$. Der Phasenwert $\pi$ ($180°$) ist also bei der Dreieckform nicht möglich.