Exercise 3.5Z: Integration of Dirac Functions

From LNTwww
Revision as of 16:05, 17 January 2018 by Guenter (talk | contribs)

Integration von Diracfunktionen

Wie in der Aufgabe 3.5 soll das Spektrum ${Y(f)}$ des Signals

$$y( t ) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{f \ddot{u}r}}} \\ {{\rm{f\ddot{u} r}}} \\ {\rm{sonst.}} \\ \end{array}\;\begin{array}{*{20}c} { - T \le t < 0,} \\ {0 < t \le T,} \\ {} \\\end{array}$$

ermittelt werden. Es gelte wieder $A = 1 \,\text{V}$ und $T = 0.5 \,\text{ms}$.

Ausgegangen wird vom Zeitsignal ${x(t)}$ gemäß der mittleren Skizze, das sich aus drei Diracimpulsen bei $–T$, $0$ und $+T$ mit den Impulsgewichte ${AT}$, $-2{AT}$ und ${AT}$ zusammensetzt.

Die Spektralfunktion ${X(f)}$ kann durch Anwendung des Vertauschungssatzes direkt angegeben werden, wenn man berücksichtigt, dass die zu ${U(f)}$ gehörige Zeitfunktion wie folgt lautet (siehe untere Skizze):

$$u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$



Hinweise:

$$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .$$
$$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}2{\rm{\pi }}fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Berechnen Sie die Spektralfunktion ${X(f)}$. Wie groß ist deren Betrag bei den Frequenzen $f = 0$ und $f = 1\, \text{kHz}$?

$|{X(f = 0)}| \ = \ $

 $\text{mV/Hz}$
$|{X(f = 1\, \text{kHz})}|\ = \ $

 $\text{mV/Hz}$

2

Berechnen Sie die Spektralfunktion ${Y(f)}$. Welche Werte ergeben sich bei den Frequenzen $f = 0$ und $f = 1\, \text{kHz}$?

$|{Y(f = 0)}|\ = \ $

 $\text{mV/Hz}$
$|{Y(f = 1\, \text{kHz})}| \ = \ $

 $\text{mV/Hz}$


Musterlösung

(1)  Im Angabenteil zur Aufgabe finden Sie die Fourierkorrespondenz zwischen ${u(t)}$ und ${U(f)}$. Da sowohl die Zeitfunktionen ${u(t)}$ und ${x(t)}$ als auch die dazugehörigen Spektren ${U(f)}$ und ${X(f)}$ gerade und reell sind, kann man ${X(f)}$ durch Anwendung des Vertauschungssatzes leicht berechnen:

$$X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$

Wegen der Beziehung $\sin^{2}(\alpha) = (1 – \cos(\alpha))/2$ kann hierfür auch geschrieben werden:

$$X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$
  • Bei der Frequenz $f = 0$ hat ${x(t)}$ keine Spektralanteile   ⇒   ${X(f = 0)} \;\underline{= 0}$.
  • Für $f = 1 \,\text{kHz}$, also $f \cdot T = 0.5$, gilt dagegen:
$$X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\; \Rightarrow \; |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 \;{\rm{mV/Hz}}}{\rm{.}}$$


(2)  Das Spektrum ${Y(f)}$ kann aus ${X(f)}$ durch Anwendung des Integrationssatzes ermittelt werden. Wegen ${X(f = 0)} = 0$ muss die Diracfunktion bei der Frequenz $f = 0$ nicht berücksichtigt werden und man erhält:

$$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$

Es ergibt sich selbstverständlich das gleiche Ergebnis wie in der Aufgabe 3.5:

  • Bei der Frequenz $f = 0$ hat auch ${y(t)}$ keine Spektralanteile   ⇒   ${Y(f = 0)} \;\underline{= 0}$.
  • Für $f = 1\,\text{kHz} \ \ (f \cdot T = 0.5)$ erhält man gegenüber $X(f)$ einen um den Faktor $\pi$ kleineren Wert:
$$|Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} \;{\rm{mV/Hz}}}{\rm{.}}$$