Exercise 3.7: Synchronous Demodulator

From LNTwww
Revision as of 17:33, 17 January 2018 by Guenter (talk | contribs)

Die Spektralfunktionen $R(f)$ und $Z_{\rm E}(f)$

Zur Rücksetzung eines amplitudenmodulierten Signals in den ursprünglichen Frequenzbereich verwendet man oft einen Synchrondemodulator:

  • Dieser multipliziert das AM-Eingangssignal $r(t)$ mit einem empfangsseitigen Trägersignal $z_{\rm E}(t)$, das sowohl hinsichtlich der Frequenz $f_{\rm T}$ als auch der Phase $\varphi_{\rm T}$ mit dem sendeseitigen Trägersignal $z_{\rm S}(t)$ übereinstimmen sollte.
  • Es folgt ein rechteckförmiger Tiefpass zur Eliminierung aller spektralen Anteile oberhalb der Trägerfrequenz $f_{\rm T}$. Das Ausgangssignal des Synchrondemodulators nennen wir $v(t)$.


Das oben skizzierte Spektrum $R(f)$ des Empfangssignals $r(t)$ ist durch Zweiseitenband–Amplitudenmodulation eines sinusförmigen Quellensignals $q(t)$ mit der Frequenz $5\,\text{kHz}$ und der Amplitude $8\,\text{V}$ entstanden. Als sendeseitiges Trägersignal $z_{\rm S}(t)$ wurde ein Cosinussignal mit der Frequenz $30\,\text{kHz}$ verwendet.

Das Spektrum des empfangsseitigen Trägersignals $z_{\rm E}(t)$ besteht entsprechend der unteren Skizze aus zwei Diraclinien, jeweils mit dem Gewicht $A/2$. Da $z_{\rm E}(t)$ keine Einheit beinhalten soll, sind auch die Gewichte der Diracfunktionen dimensionslos.



Hinweise:



Fragebogen

1

Es gelte $f_{\rm T} = 30\,\text{kHz}$ und $A=1$. Berechnen Sie das Ausgangssignal $v(t)$.
Welcher Signalwert tritt zum Zeitpunkt $t = 50\, {\rm µ} \text{s}$ auf?

$v(t = 50\, µ\text{s})\ = \ $

 $\text{V}$

2

Wie groß muss die Amplitude des empfangsseitigen Trägersignals $z_{\rm E}(t)$ gewählt werden, damit $v(t) = q(t)$ gilt?

$A\ = \ $

3

Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} = 31\,\text{kHz}$.
Welcher Signalwert tritt zum Zeitpunkt $ t = 50\, µ\text{s}$ auf?

$v(t = 50\, µ\text{s})\ = \ $

 $\text{V}$


Musterlösung

(1)  Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$.

  • Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $+5 \,\text{kHz}$, $+55 \,\text{kHz}$ und $+65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.
  • Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \,\text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \,\text{kHz}$, $-55 \,\text{kHz}$, $-5 \,\text{kHz}$ und $+5 \,\text{kHz}$.


Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:

$$V( f) = - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm mit}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$
  • Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$.
  • Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$.
  • Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.


(2)  Mit $A = 1$ ist also $v(t)$ nur halb so groß wie $q(t)$   ⇒   Mit $\underline{A = 2}$ sind beide Signale gleich.


(3)  Die Diraclinien bei $\pm f_{\rm T}$ haben jeweils das Gewicht $1$. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich $2 \text{V}$.

  • Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_{\rm E}(t)$ liefert Anteile bei $-\hspace{-0.08cm}4\, \text{kHz (p: positiv)}$, $+6 \,\text{kHz (n: negativ)}$, $+56 \,\text{kHz (p)}$ und $+66 \,\text{kHz (n)}$.
  • Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei $-\hspace{-0.08cm}66 \,\text{kHz (p)}$, $-\hspace{-0.08cm}56 \,\text{kHz (n)}$, $-\hspace{-0.08cm}6 \,\text{kHz (p)}$ und $+4 \,\text{kHz (n)}$, alle ebenfalls mit den (betragsmäßigen) Impulsgewichten $2 \text{V}$.
  • Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei $\pm 4 \,\text{kHz}$ und $\pm 6 \,\text{kHz}$. Das dazugehörige Zeitsignal lautet somit mit $f_4 = 4 \,\text{kHz}$ und $f_6 = 6 \,\text{kHz}$:
$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$

Zum Zeitpunkt $t = 50\, µ\text{s}$ erhält man:

$$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$