Exercise 2.5: DSL Error Protection

From LNTwww
Revision as of 17:37, 8 February 2018 by Guenter (talk | contribs)

Fehlerschutz bei ADSL


Um die Bitfehlerrate der xDSL–Systeme entscheidend zu senken, wurden in den Spezifikationen verschiedene Sicherungsverfahren vorgeschlagen, um den zwei häufigsten Fehlerursachen entgegen zu wirken:

  • Bitfehler aufgrund von Impuls– und Nebensprechstörungen auf der (Zweidraht–)Leitung,
  • Abschneiden von Signalspitzen aufgrund mangelnder Dynamik der Sendeverstärker (Clipping).


Die Grafik zeigt die Fehlerschutzmaßnahmen bei ADSL/DMT. Diese sind in zwei verschiedenen Pfaden realisiert:

  • Beim Fast–Path setzt man auf geringe Wartezeiten.
  • Beim Interleaved–Path wird eine niedrige Bitfehlerrate erwartet.


Die Zuordnung der Bits zu diesen Pfaden übernimmt dabei ein Multiplexer (MUX) mit Synchronisationskontrolle.



Hinweis:




Fragebogen

1

Welche Aussagen sind für die beiden Pfade zutreffend?

Der Interleaved–Path hat größere Latenzzeiten.
Der Fast–Path ist anfälliger gegenüber AWGN–Rauschen.
Der Fast–Path ist anfälliger gegenüber Bündelfehlern.

2

Welche Aufgaben haben der Cyclic Redundancy Check (CRC) und der Scrambler?

CRC bildet aus Datenblöcken einen Prüfwert mit 8 Bit.
Die Redundanz von des CRC ist sehr hoch.
Der Scrambler soll lange Null–Folgen und Eins–Folgen vermeiden.
CRC und (De–)Scrambler werden mit Schieberegistern realisiert.

3

Welche Aussagen sind bezüglich der Vorwärtsfehlerkorrektur zutreffend?

DSL/DMT verwendet eine Faltungscodierung.
DSL/DMT verwendet Reed–Solomon–Codierung.
Die Codierung geschieht auf Byte–Ebene.
Es handelt sich um eine symbolweise Codierung.
Optional wird Trellis–codierte Modulation (TCM) verwendet.

4

Welche Aufgaben erfüllen Interleaving und De–Interleaving?

Verbesserte Korrekturmöglichkeiten für „Reed–Solomon”.
Interleaver und De–Interleaver arbeiten auf Byte–Ebene.
Durch Interleaving wird Redundanz hinzugefügt.
Interleaving ist besonders für Echtzeitanwendungen geeignet.

5

Welche Aufgaben haben die Blöcke „Tone Ordering” und „Gain Scaling”?

Vermessung der Kanalcharakteristik der einzelnen Subkanäle.
Zuweisung der einzelnen QAM–Signale auf Subkanäle.
Durch Tone Ordering kann man die Bitfehlerrate weiter senken.


Musterlösung

(1)  Richtig sind die Aussagen 1 und 3:

  • Aufgrund des fehlenden Interleavers im Fast–Path ist dieser Pfad weniger gegenüber Bündelfehlern geschützt.
  • Bei AWGN–Rauschen ist dagegen durch einen Interleaver keine Verringerung der Bitfehlerrate möglich.
  • Der Nachteil eines Interleavers sind die großen Wartezeiten (Latency), da damit die Eingangsbits über einen großen Zeitbereich verteilt werden, um nach dem in gleicher Weise aufgebauten De–Interleaver aus Bündelfehlern Einzelfehler zu machen, die dann durch die Vorwärtsfehlerkorrektur (Forward Error Correction, FEC) entfernt werden können.


(2)  Richtig sind die Aussagen 1, 3 und 4:

  • Sowohl das CRC–Verfahren (Cyclic Redundancy Check) als auch Scrambler/De–Scrambler werden mit Schieberegistern der Länge $8$ bzw. $23$ realisiert.
  • Der Scrambler ist redundanzfrei (das heißt, er hat genau so viele Ausgangsbits wie Eingangsbits) und ist nach kurzer Einlaufzeit selbstsynchronisierend.
  • Die Redundanz von CRC ist sehr gering. Es handelt sich dabei nicht um eine Fehlerkorrektur im eigentlichen Sinn, sondern um die Kontrolle besonders wichtiger Daten, zum Beispiel solcher zur Rahmensynchronisierung.


(3)  Richtig sind die Aussagen 2, 3 und 5:

  • Im $\rm LNTwww$–Buch Kanalcodierung finden Sie ausführliche Kapitel über Trellis–codierte Modulation (TCM) und zu den Reed–Solomon–Codes.
  • Bei Letzteren handelt es sich um Blockcodes – also keine symbolweise Codierung – auf Byte–Ebene.


(4)  Richtig sind die Aussagen 1 und 2 im Gegensatz zu den beiden letzten:

  • Das Interleaving ist redundanzfrei und führt zu großen Latenzzeiten und Verzögerungen, so dass bei Echtzeitanwendungen darauf verzichtet werden sollte.


(5)  Alle genannten Aussagen sind richtig, wie auf der Seite Gain Scaling und Tone Ordering im Detail nachgelesen werden kann.