Attenuation of Copper Cables
Contents
Applet Description
Theoretical Background
Magnitude Frequency Response and Attenuation Function
Following relationship exists between the magnitude frequency response and the attenuation function:
- |HK(f)|=10−aK(f)/20=e−aK, Np(f).
- The index „K” makes it clear, that the considered LTI system is a cable(Ger: Kabel).
- For the first calculation rule, the damping function aK(f) must be used in dB (decibel).
- For the first calculation rule, the damping function aK, Np(f) must be used in Np (Neper).
- The following conversions apply: 1 dB=0.05⋅ln(10) Np=0.1151 Np or 1 Np=20⋅lg(e) dB=8.6859 dB.
- This applet exclusively uses dB values.
Attenuation Function of a Coaxial Cable
According to [Wel77][1] the Attenuation Function of a Coaxial Cable of length l is given as follows:
- aK(f)=(α0+α1⋅f+α2⋅√f)⋅l.
- It is important to note the difference between aK(f) in dB and the „alpha” coefficient with other pseudo–units.
- The attenuation function aK(f) is directly proportional to the cable length l; aK(f)/l is referred to as the „attenuation factor” or „kilometric attenuation”.
- The frequency-independent component α0 of the attenuation factor takes into account the Ohmic losses.
- The frequency proportional portion α1·f of the attenuation factor is due to the derivation losses („crosswise loss”) .
- the dominant portion α2 goes back to Skineffekt, which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.
The constants for the standard coaxial cable with a 2.6 mm inner diameter and a 9.5 mm outer diameter ⇒ short Coax (2.6/9.5 mm) are:
- α0=0.014dBkm,α1=0.0038dBkm⋅MHz,α2=2.36dBkm⋅√MHz.
The same applies to the coaxial coaxial cable' ⇒ short Coax (1.2/4.4 mm):
- α0=0.068dBkm,α1=0.0039dBkm⋅MHz,α2=5.2dBkm⋅√MHz.
These values can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77][1] . They are valid for a temperature of 20 ° C (293 K) and frequencies greater than 200 kHz.
Attenuation Function of a Two–wired Line
According to [PW95][2] the attenuation function of a Two–wired Line of length l is given as follows:
- aK(f)=(k1+k2⋅(f/MHz)k3)⋅l.
This function is not directly interpretable, but is a phenomenological description.
[PW95][2]also provides the constants determined by measurement results:
- d=0.35 mm: k1=7.9 dB/km,k2=15.1 dB/km,k3=0.62,
- d=0.40 mm: k1=5.1 dB/km,k2=14.3 dB/km,k3=0.59,
- d=0.50 mm: k1=4.4 dB/km,k2=10.8 dB/km,k3=0.60,
- d=0.60 mm: k1=3.8 dB/km,k2=9.2 dB/km,k3=0.61.
From these numerical values one recognizes:
- The attenuation factor α(f) and the attenuation function aK(f)=α(f)·l depend significantly on the pipe diameter. The cables laid since 1994 with d=0.35 (mm) and d=0.5 mm have a 10% greater attenuation factor than the older lines with d=0.4 or d=0.6.
- However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range lmax of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate generators have to be used.
- The current transmission methods for copper lines prove only a relatively narrow frequency band, for example 120 kHz with ISDN and ca. 1100 kHz with DSL. For f=1 MHz the attenuation factor of a 0.4 mm cable is around 20 dB/km, so that even with a cable length of l=4 km the Attenuation does not exceed 80 dB.
Conversion Between k and α parameters
The k–parameters of the attenuation factor ⇒ αI(f) can be converted into corresponding α–parameters ⇒ αII(f):
- αI(f)=k1+k2⋅(f/f0)k3,mitf0=1MHz,
- αII(f)=α0+α1⋅f+α2⋅√f.
As a criterion of this conversion, we assume that the quadratic deviation of these two functions is minimal within a bandwidth B:
- ∫B0[αI(f)−αII(f)]2df⇒Minimum.
It is obvious that α0=k1. The parameters α1 and α2 are dependent on the underlying bandwidth B and are:
- α1=15⋅(B/f0)k3−1⋅k3−0.5(k3+1.5)(k3+2)⋅k2/f0,α2=10⋅(B/f0)k3−0.5⋅1−k3(k3+1.5)(k3+2)⋅k2/√f0.
Example 1:
- For k3=1 (frequency proportional attenuation factor) we get α0=k0,α1=k2/f0,α2=0.
- For k3=0.5 (Skin effect) we get the coefficients: α0=k0,α1=0,α2=k2/√f0.
- For k3<0.5 we get a negative α1. Conversion is only possible for 0.5≤k3≤1.
Umrechnung in Gegenrichtung
Fehlt noch
Channel Influence on the Binary Nyquistent Equalization
Going by the block diagram: Between the Dirac source and the decider are the frequency responses for the transmitter ⇒ HS(f), Channel ⇒ HK(f) and receiver ⇒ HE(f).
In this applet
- we neglect the influence of the transmitted pulse form ⇒ HS(f)≡1 ⇒ dirac shaped transmission signal s(t),
- presuppose a binary Nyquist system with cosine–roll-off around the Nyquistf requency fNyq=[f1+f2]/2=1(2T) :
- HK(f)·HE(f)=HCRO(f).
This means: The first Nyquist criterion is met ⇒
Timely successive impulses do not disturb each other ⇒ there are no Intersymbol Interferences.
In the case of white noise, the transmission quality is thus determined solely by the noise power in front of the receiver:
- PN=N02⋅∫+∞−∞|HE(f)|2 dfmit|HE(f)|2=|HCRO(f)|2|HK(f)|2.
The lowest possible noise performance results with an ideal channel ⇒ HK(f)≡1 and a rectangular HCRO(f)≡1 in |f|≤fNyq:
- PN, min=PN [optimal system: HK(f)≡1, r=0]=N0⋅fNyq.
Definitionen:
- Als Gütekriterium für ein gegebenes System verwenden wir den Gesamt–Wirkungsgrad:
- ηK+R=PN [gegebenes System: Kanal HK(f), Roll-off-Faktor r]PN [optimales System: HK(f)≡1, r=0]=1fNyq⋅∫+∞0|HE(f)|2 df≤1.
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: 10⋅lg ηK+R≤0 dB.
- Durch Variation und Optimierung des Roll-off-Faktors r erhält man den Kanal–Wirkungsgrad:
- ηK=min0≤r≤1 ηK+R.
Ab hier bis zum Beginn der Versuchsdurchführung ist alles Mist - eine Art Vorratsspeicher
- Bei UMTS ist das Empfangsfilter HEf)=HS(f) an den Sender angepasst (Matched–Filter) und der Gesamtfrequenzgang H(f)=HS(f)·HE(f) erfüllt
- H(f)=HCRO(f)={10cos2(π⋅(|f|−f1)2⋅(f2−f1))f¨urf¨ursonst.|f|≤f1,|f|≥f2,
Die zugehörige Zeitfunktion lautet:
- h(t)=hCRO(t)=si(π⋅t/TC)⋅cos(r⋅πt/TC)1−(2r⋅t/TC)2.
„CRO” steht hierbei für Cosinus–Rolloff (englisch: Raised Cosine). Die Summe f1+f2 ist gleich dem Kehrwert der Chipdauer TC=260 ns, also gleich 3.84 MHz. Der Rolloff–Faktor (wir bleiben bei der in LNTwww gewählten Bezeichnung r, im UMTS–Standard wird hierfür α verwendet)
- r=f2−f1f2+f1
wurde bei UMTS zu r=0.22 festgelegt. Die beiden Eckfrequenzen sind somit
- f1=1/(2TC)⋅(1−r)≈1.5MHz,f2=1/(2TC)⋅(1+r)≈2.35MHz.
Die erforderliche Bandbreite beträgt B=2·f2=4.7 MHz. Für jeden UMTS–Kanal steht somit mit 5 MHz ausreichend Bandbreite zur Verfügung.
Fazit: Die Grafik zeigt
- links das (normierte) Nyquistspektrum H(f), und
- rechts den zugehörigen Nyquistimpuls h(t), dessen Nulldurchgänge im Abstand TC äquidistant sind.
Es ist zu beachten:
- Das Sendefilter HS(f) und Matched–Filter HE(f) sind jeweils Wurzel–Cosinus–Rolloff–förmig (englisch: Root Raised Cosine). Erst das Produkt H(f)=HS(f)·HE(f) den Cosinus–Rolloff.
- Das bedeutet auch: Die Impulsantworten hS(t) und hE(t) erfüllen für sich allein die erste Nyquistbedingung nicht. Erst die Kombination aus beiden (im Zeitbereich die Faltung) führt zu den gewünschten äquidistanten Nulldurchgängen.
ak(f)=(k1+k2⋅fk3)⋅l⇒empirische Formel von Pollakowski & Wellhausen.
- Umrechnung der k-Parameter in die a-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite B minimal sein soll:
a0=k1(trivial),a1=15⋅Bk3−1⋅k2⋅(k3−0.5)(k3+1.5)⋅(k3+2),a2=10⋅Bk3−0.5⋅k2⋅(1−k3)(k3+1.5)⋅(k3+2).
- Kontrolle: k3=1⇒a1=k2; a2=0k3=0.5⇒a1=0; a2=k2.
- Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f2 und r=f2−f1f2+f1 gelten soll.
- Ohne Berücksichtigung des Sendespektrums gilt H(f)=HK(f)⋅HE(f)⇒HE(f)=H(f)HK(f).
- Der angegebene Integralwert =∫+∞−∞|HE(f)|2df ist ein Maß für die Rauschleistung des Systems, wenn der Kanal HK(f) durch das Empfangsfilter HE(f) in weiten Bereichen bis f1 vollständig entzerrt wird.
- idealer Kanal (a0=a1=a2=0 dB), B=20 MHz, r=0: Integralwert = 40 MHz.
- schwach verzerrender Kanal (a2=5 dB), B=20 MHz, r=0.5: Integralwert ≈505 MHz.
Exercises
- First choose an exercise number.
- An exercise description is displayed.
- Parameter values are adjusted to the respective exercises.
- Click „Hide solition” to display the solution.
- Exercise description and solution in english
Number „0” is a „Reset” button:
- Sets parameters to initial values (when loading the page).
- Displays a „Reset text” to describe the applet further.
In der folgenden Beschreibung bedeutet
- Blau: Verteilungsfunktion 1 (im Applet blau markiert),
- Rot: Verteilungsfunktion 2 (im Applet rot markiert).
(1) First set Blue to Coax (1.2/4.4 mm) and then to Coax (2.6/9.5 mm). The cable length is lBlue=5 km.
- Interpret aK(f) and |HK(f)|, in particular the functional values aK(f=f⋆=30 MHz) and |HK(f=0)|.
⇒The attenuation function increases approximately √f and the magnitude frequency response falls similarly to an exponential function;
Coax (1.2/4.4 mm): aK(f=f⋆)=143.3 dB;|HK(f=0)|=0.96.
Coax (2.6/9.5 mm): aK(f=f⋆)=65.3 dB;|HK(f=0)|=0.99;
(2) Set Blue to Coax (1.2/4.4 mm) and lBlue=3 km. How is aK(f=f⋆=30 MHz) affected by α0, α1 und α2?
⇒α2is crucial (Skin effect). The contributions of α0 (ca. 0.1 dB) and α1 (ca. 0.6 dB) are comparatively small.
(3) Additionally, set Red to Two–wired Line (0.5 mm) and lRed=1 km. What is the resulting value for aK(f=f⋆=30 MHz)?
- Up to what length lRed does the red attenuation function go under the blue one?
⇒Red curve: aK(f=f⋆)=87.5 dB. The above condition is fulfilled for lRed=0.7 km ⇒ aK(f=f⋆)=61.3 dB.
(4) Set Red to k1′=0,k2′=10,k3′=0.75,lred=1 km and vary the Parameter 0.5≤k3≤1.
- What observations can be made based on aK(f) and |HK(f)|?
⇒With k2being constant, aK(f) increases with bigger values of k3 and |HK(f)| decreases faster and faster. With k3=1:aK(f) rises linearly.
With, k3→0.5 the attenuation function is more and more determined by the skin effect, same as the coaxial cable.
(5) Set Red to Two–wired Line (0.5 mm) and Blue to Conversion of Red. For the length use lRot=lBlau=1 km.
- Analyse and interpret the displayed functions aK(f) and |HK(f)|.
⇒Very good approximation of the two-wire line through the blue parameter set, both with regard to aK(f), as well as |HK(f)|.
(6) We assume the settings of (5). Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?
⇒Solution based on '''Blue''': aK(f=f⋆=30 MHz)=88.1 dB,without α0: 83.7 dB,without α0 and α1: 60.9 dB.
With a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than with a coaxial cable.
(7) Based on the previous setting, vary the parameter 0.5≤k3≤1. What do you recognize by means of aK(f) and |HK(f)|?
⇒At constant k2 aK(f) becomes increasingly larger and has a linear coursse for k3=1; |HK(f)| decreases at an increasing rate;
At k3→0.5 The attenuation function of the two-wire line approaches that of a coaxial cable more and more.
(7) Set Blue to α0′=α1′=α2′=0 and Red to k1′=2,k2′=0,lred=1 km. Additionally, set fNyq′=15 and r=0.5.
- How bi is the total efficiency ηK+E and the channel efficiency ηK?
⇒10⋅lg ηK+E=−0.67 dB (Blue: ideal system) and 10⋅lg ηK+E=−2.67 dB (Red: DC signal attenuation only).
The best possible rolloff factor is r=1. Therefore 10⋅lg ηK=0 dB (Blue) or 10⋅lg ηK=−2 dB (Red).
(8) The same settings apply as in (7). Under what transmission power Pred in respect to Pblue do both systems achieve the same error probability?
⇒It has to apply: 10⋅lg Pred/Pblue=2 dB ⇒ Pred/Pblue=100.2=1.585.
(9) Set Blue tof α0′=α1′=0, α2′=3, lblue′=1 and Red to „Inactive”. Additionally set fNyq′=15 and r=0.5.
- What course does |HE(f)|have? Calculate the total efficiency ηK+E and the channel efficiencyηK
⇒Forf<7.5 MHz:|HE(f)|=|HK(f)|−1. For (f>22.5 MHz):|HE(f)|=0. Inbetween is the effect of the CRO–flank.
The best possible rolloff factor r=0.5is already set: ⇒ 10⋅lg ηK+E=10⋅lg ηK≈−8.8 dB.
(10) Set Blue to α0′=α1′=0, α2′=3, lblue′=10 and Red to „Inactive”. Additionally, set fNyq′=15 and r=0.5.
- How big is |HE(f=0)|? What is the maximum value of |HE(f)|? Calculate the channel efficiency ηK
⇒|HE(f=0)|=|HE(f=0)|−1=1 and the maximum value |HE(f)| is approximately 3320 for r=0.5⇒10⋅lg ηK+E≈−110 dB,
because the integral over |HE(f)|2is huge. After the optimization r=0.14 we get 10⋅lg ηK≈−104.9 dB.
Vorgeschlagene Parametersätze
(1) Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a0=20, a1=0, a2=0:
Konstante Werte aK=20 dB und |HK(f)|=0.1. Nur Ohmsche Verluste werden berücksichtigt.
(2) Parameter wie (1), aber zusätzlich a1=1 dB/(km · MHz):
Linearer Anstieg von aK(f) zwischen 20 dB und 50 dB, |HK(f)| fällt beidseitig exponentiell ab.
(3) Parameter wie (1), aber a0=0, a1=0, a2=1 dB/(km · MHz1/2).
aK(f) und |HK(f)| werden ausschließlich durch den Skineffekt bestimmt. aK(f) ist proportional zu f1/2.
(4) Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):
Es überwiegt der Skineffekt; ak (f=30 MHz)=13.05 dB; ohne a0: 13.04 dB, ohne a1=12.92 dB.
(5) Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 1.2/4.4 mm“ (Kleinkoaxialkabel):
Wieder überwiegt der Skineffekt; ak (f=30 MHz)=28.66 dB; ohne a0: 28.59 dB, ohne a1=28.48 dB.
(6) Nur roter Parametersatz, l=1km, b=30 MHz, r=0, Einstellung „Zweidrahtleitung 0.4 mm“.
Skineffekt ist auch hier dominant; ak (f=30 MHz)=111.4 dB; ohne k1: 106.3 dB.
(7) Parameter wie (6), aber nun Halbierung der Kabellänge (l=0.5 km):
Auch die Dämpfungswerte werden halbiert: ak (f=30 MHz)=55.7 dB; ohne k1: 53.2 dB.
(8) Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:
Sehr gute Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.4 dB.
(9) Parameter wie (8), aber nun Approximation auf die Bandbreite B=20 MHz:
Noch bessere Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.15 dB.
(10) Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a0=a1=a2=0; unten Darstellung |HK(f)|2:
Im gesamten Bereich ist |HK(f)|2=1; der Integralwert ist somit 2B=60 (in MHz).
(11) Parameter wie (10), aber nun mit Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):
|HK(f)|2 ist bei f=1 etwa 1 und steigt zu den Rändern bis ca. 20. Der Integralwert ist ca. 550.
(12) Parameter wie (11), aber nun mit der deutlich größeren Kabellänge l=5 km:
Deutliche Verstärkung des Effekts; Anstieg bis ca. 3.35⋅106 am Rand und Integralwert 2.5⋅107.
(13) Parameter wie (12), aber nun mit Rolloff-Faktor r=0.5:
Deutliche Abschwächung des Effekts; Anstieg bis ca. 5.25⋅104 (f ca. 20 MHz), Integralwert ca. 1.07⋅106.
(14) Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste (a0=0):
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. 5.15⋅104 (f ca. 20 MHz), Integralwert ca. 1.05⋅106.
(15) Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste (a1=0):
Ebenfalls kein großer Unterschied; Anstieg bis ca. 4.74⋅104 (f ca. 20 MHz), Integralwert ca. 0.97⋅106.
(16) Nur roter Parametersatz, l=1 km, B=30 MHz, r=0.5, Einstellung „Zweidrahtleitung 0.4 mm“:
Anstieg bis ca. 3⋅108 (f ca. 23 MHz), Integralwert ca. 4.55⋅109; ohne k1: 0.93⋅108 (f ca. 23 MHz) bzw. 1.41⋅109.
Quellenverzeichnis
- ↑ Jump up to: 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
- ↑ Jump up to: 2.0 2.1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.