Exercise 1.3: Entropy Approximations

From LNTwww
Revision as of 13:02, 29 May 2018 by Mwiki-lnt (talk | contribs) (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)

Vier verschiedene Binärfolgen

Die Grafik zeigt vier Symbolfolgen $\langle q_\nu \rangle $mit jeweilger Länge $N = 60$. Die Quellensymbole sind jeweils $\rm A$ und $\rm B$. Daraus folgt direkt, dass für den Entscheidungsgehalt aller betrachteten Quellen $H_0 = 1 \; \rm bit/Symbol$ gilt. Die Symbole $\rm A$ und $\rm B$ treten jedoch nicht gleichwahrscheinlich auf, sondern mit den Wahrscheinlichkeiten $p_{\rm A}$ und $p_{\rm B}$.

Die folgende Tabelle zeigt neben $H_0$ noch die Entropienäherungen

  • $H_1$, basierend auf $p_{\rm A}$ und $p_{\rm B}$ (Spalte 2),
  • $H_2$, basierend auf Zweiertupel (Spalte 3),
  • $H_3$, basierend auf Dreiertupel (Spalte 4),
  • $H_4$, basierend auf Vierertupel (Spalte 5),
  • die tatsächliche Entropie $H$, die sich aus $H_k$ durch den Grenzübergang für $k \to \infty$ ergibt (letzte Spalte).


Zwischen diesen Entropien bestehen folgende Größenrelationen:   $H \le$ ... $\le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$

  • Nicht bekannt ist die Zuordnung zwischen den Quellen Q1, Q2, Q3, Q4 und den in der Grafik gezeigten gezeigten Symbolfolgen (Schwarz, Blau, Rot, Grün).
  • Es ist lediglich bekannt, dass die Quelle Q4 einen Wiederholungscode beinhaltet. Aufgrund der Tatsache, dass bei der entsprechenden Symbolfolge jedes zweite Symbol keinerlei Information lierfert, ist $H_0 = 0.5 \; \rm bit/Symbol$. Zudem sind die Entropienäherungen $H_1 = 1 \; \rm bit/Symbol$ (gleichwahrscheinliche Symbole) und $H_4 \approx 0.789 \; \rm bit/Symbol$ gegeben

Zu bestimmen sind für diese Nachrichtenquelle schließlich noch die Entropienäherungen $H_2$ und $H_3$.

Quellenentropie und Näherungen in „bit/Symbol”


Hinweise:

  • Für die $k$–te Entropienäherung gilt bei Binärquellen ($M = 2$) mit der Verbundwahrscheinlichkeit $ p_i^{(k)}$ eines $k$–Tupels:
$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{2^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol}) \hspace{0.05cm}.$$


Fragebogen

1

Von welcher Quelle stammt die schwarze Symbolfolge?

Q1,
Q2,
Q3,
Q4.

2

Von welcher Quelle stammt die blaue Symbolfolge?

Q1,
Q2,
Q3,
Q4.

3

Von welcher Quelle stammt die rote Symbolfolge?

Q1,
Q2,
Q3,
Q4.

4

Berechnen Sie die Entropienäherung $H_2$ des Wiederholungscodes Q4.

$H_2 \ = $

$\ \rm bit/Symbol$

5

Berechnen Sie die Entropienäherung $H_3$ des Wiederholungscodes Q4.

$H_3 \ = $

$\ \rm bit/Symbol$


Musterlösung

(1)  Die schwarze Binärfolge stammt von der Quelle Q3, da die Symbole gleichwahrscheinlich sind   ⇒   $H_1 = H_0$ und keine statistischen Bindungen zwischen den Symbolen bestehen   ⇒   $H=$ .... $= H_2 = H_1$.


(2)  Man erkennt bei der blauen Binärfolge, dass $\rm A$ sehr viel häufiger auftritt als $\rm B$, so dass $H_1 < H_0$ gelten muss. Entsprechend der Tabelle erfüllt nur die Quelle Q1 diese Bedingung. Aus $H_1 = 0.5 \; \rm bit/Symbol$ kann man die Symbolwahrscheinlichkeiten $p_{\rm A} = 0.89$ und $p_{\rm B} = 0.11$ ermitteln.


(3)  Durch Ausschlussverfahren kommt man für die rote Binärfolge zum Quelle Q2: Die Quelle Q1 gehört nämlich zur blauen Folge, Q3 zur schwarzen und Q4 zum Wiederholungscode und damit offensichtlich zur grünen Symbolfolge. Die rote Symbolfolge weist folgende Eigenschaften auf:

  • Wegen $H_1 = H_0$ sind die Symbole gleichwahrscheinlich: $p_{\rm A} = p_{\rm B} = 0.5$.
  • Wegen $H < H_1$ bestehen statistische Bindungen innerhalb der Folge. Diese erkennt man daran, dass es zwischen $\rm A$ und $\rm B$ mehr Übergänge als bei statistischer Unabhängigkeit gibt.


(4)  Bei der grünen Symbolfolge (Quelle Q4) sind die Symbole $\rm A$ und $\rm B$ gleichwahrscheinlich:

Symbolfolgen eines binären Wiederholungscodes
$$p_{\rm A} = p_{\rm B} = 0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_1 = 1\,{\rm bit/Symbol} \hspace{0.05cm}.$$

Zur $H_2$-Ermittlung betrachtet man Zweiertupel. Die Verbundwahrscheinlichkeiten $p_{\rm AA}$, $p_{\rm AB}$, $p_{\rm PA}$ und $p_{\rm BB}$ können daraus berechnet werden. Aus der Skizze erkennt man:

  • Die Kombinationen $\rm AB$ und $\rm BA$ sind nur dann möglich, wenn ein Tupel bei geradzahligem $\nu$ beginnt. Für die Verbundwahrscheinlichkeiten $p_{\rm AB}$ und $p_{\rm BA}$ gilt dann:
$$p_{\rm AB} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}(\nu {\rm \hspace{0.15cm}ist\hspace{0.15cm}gerade}) \cdot {\rm Pr}( q_{\nu} = \mathbf{A}) \cdot {\rm Pr}(q_{\nu+1} = \mathbf{B}\hspace{0.05cm} | q_{\nu} = \mathbf{A}) = {1}/{2} \cdot {1}/{2} \cdot {1}/{2} = {1}/{8} = p_{\rm BA} \hspace{0.05cm}.$$
  • Dagegen gelten für die beiden weiteren Kombinationen $\rm AA$ und $\rm BB$:
$$p_{\rm AA} ={\rm Pr}(\nu = 1) \cdot {\rm Pr}( q_1 = \mathbf{A}) \cdot {\rm Pr}(q_{2} = \mathbf{A}\hspace{0.05cm} | q_{1} = \mathbf{A}) + {\rm Pr}(\nu=2) \cdot {\rm Pr}( q_{2} = \mathbf{A}) \cdot {\rm Pr}(q_{3} = \mathbf{A}\hspace{0.05cm} | q_{2} = \mathbf{A}) \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}p_{\rm AA} = \frac{1}{2} \cdot \frac{1}{2} \cdot 1+ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{8} = p_{\rm BB} \hspace{0.05cm}.$$
Hierbei steht $\nu = 1$ für alle ungeradzahligen $\nu$ und $\nu = 2$ für alle geradzahligen.
  • Damit ergibt sich für die Entropienäherung:
$$H_2 = \frac{1}{2} \cdot \left [ 2 \cdot \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}\frac {8}{3} + 2 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] = \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}(8) - \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}(3) + \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} \underline {= 0.906 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

(5)  Nach ähnlichem Vorgehen kommt man bei Dreiertupeln zu den Verbundwahrscheinlichkeiten

$$p_{\rm AAA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm BBB} = 1/4 \hspace{0.05cm},\hspace{0.2cm} p_{\rm ABA} = p_{\rm BAB} = 0 \hspace{0.05cm},$$
$$ p_{\rm AAB} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm ABB} = p_{\rm BBA} = p_{\rm BAA} = 1/8$$

und daraus zur Entropienäherung

$$H_3 = \frac{1}{3} \cdot \left [ 2 \cdot \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm}(4) + 4 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] = \frac{2.5}{3} \hspace{0.15cm} \underline {= 0.833 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

Zur Berechnung von$H_4$ ergeben sich folgende $16$ Wahrscheinlichkeiten:

$$p_{\rm AAAA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm BBBB} = 3/16 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AABB} = p_{\rm BBAA} = 2/16 \hspace{0.05cm},$$
$$ p_{\rm AAAB} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm ABBA} = p_{\rm ABBB} = p_{\rm BBBA} = p_{\rm BAAB} = p_{\rm BAAA}= 1/16 \hspace{0.05cm}$$
$$ p_{\rm AABA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm ABAA} = p_{\rm ABAB} = p_{\rm BBAB} = p_{\rm BABB} = p_{\rm BABA}= 0\hspace{0.05cm}.$$

Daraus folgt:

$$H_4= \frac{1}{4} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\left [ 2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{3}{16} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.1cm}\frac{16}{3} + 2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{1}{8} \hspace{-0.05cm}\cdot \hspace{-0.05cm}{\rm log}_2\hspace{0.1cm}(8) + 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{1}{16} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.1cm}(16)\right ] =\frac{\left [ 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(16) - 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(3) + 4 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(8) + 6\hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(16)\right ]}{32} .$$

Man erkennt: Auch die Näherung $H_4 = 0.789\,{\rm bit/Symbol}$ weicht noch weit vom Entropie-Endwert $H = 0.5\,{\rm bit/Symbol}$ ab.

Hinweis: Der Wiederholungscode kann offensichtlich nicht durch eine Markovquelle modelliert werden. Wäre Q4 eine Markovquelle, so müsste nämlich gelten:

$$H = 2 \cdot H_2 - H_1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_2 = 1/2 \cdot (H+H_1) = 1/2 \cdot (0.5+1) = 0.75 \,{\rm bit/Symbol}\hspace{0.05cm}.$$