Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.8: Numerical Analysis of the AWGN Channel Capacity

From LNTwww
Revision as of 14:03, 29 May 2018 by Mwiki-lnt (talk | contribs) (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)

Kapazität C für gegebenes ES/N0

Für die KanalkapazitätC des AWGN–Kanals als obere Schranke für die Coderate R bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen:

Kanalkapazität C in Abhängigkeit der Energie pro Symbol:

C(ES/N0)=1/2log2(1+2ESN0).

Hierbei sind folgende Abkürzungen verwendet:

  • ES bezeichnet die (mittlere) Energie pro Symbol des Digitalsignals,
  • N0 gibt die AWGN–Rauschleistungsdichte an.


Kanalkapazität C in Abhängigkeit der Energie pro Bit:

C(EB/N0)=1/2log2(1+2REBN0).
  • Zu berücksichtigen ist der Zusammenhang ES=REB, wobei R die Coderate der bestmöglichen Kanalcodierung angibt.
  • Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene EB/N0 möglich, so lange RC gilt  ⇒  Kanalcodierungstheorem von Shannon.


Durch die Tabelle vorgegeben ist der Kurvenverlauf der Kanalkapazität in Abhängigkeit von ES/N0. Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.


Hinweise:



Fragebogen

1

Welche Gleichungen beschreiben den Zusammenhang zwischen EB/N0 und der Rate R beim AWGN–Kanal exakt?

Es gilt:   R=1/2log2(1+2REB/N0).
Es gilt:   22R=1+2REB/N0.
Es gilt:   EB/N0=(22R1)/(2R).

2

Geben Sie den kleinstmöglichen Wert für EB/N0 an, mit dem man über den AWGN–Kanal noch fehlerfrei übertragen kann.

Min [EB/N0] = 

3

Welche Ergebnis erhält man in dB?

Min [10lg(EB/N0)] = 

 dB

4

Geben Sie die AWGN–Kanalkapazität C für 10lg(EB/N0)=0 dB an.

C = 

 bit/Kanalzugriff

5

Geben Sie das erforderliche EB/N0 für fehlerfreie Übertragung mit R=1 an.
Hinweis: Die Lösung findet man in der Tabelle auf der Angabenseite.

Min [EB/N0] = 

6

Wie kann ein Punkt der C(EB/N0)–Kurve einfacher ermittelt werden?

Berechnung der Kanalkapazität C für das vorgegebene EB/N0.
Berechnung des erforderlichen EB/N0 für das vorgegebene C.


Musterlösung

(1)  Alle Lösungsvorschläge sind richtig:

  • Ausgehend von der Gleichung
C=1/2log2(1+2ES/N0)

erhält man mit C = R und ES = R · EB die Gleichung gemäß Lösungsvorschlag 1:

R=1/2log2(1+2REB/N0).
  • Bringt man den Faktor 1/2 auf die linke Seite der Gleichung und bildet die Potenz zur Basis 2, so erhält man den Lösungsvorschlag 2:
22R=1+2REB/N0.
  • Löst man diese Gleichung nach EB/N0 auf, so ergibt sich
EB/N0=22R12R.

(2)  Über einen Kanal mit der Kanalkapazität C ist eine fehlerfreie Übertragung möglich, solange die Coderate RC ist. Die absolute Grenze ergibt sich im Grenzfall C = R = 0. Oder präziser ausgedrückt: Für ein beliebig kleines positives ε: C = R = ε mit ε → 0.

Mit dem Ergebnis der Teilaufgabe (1) lautet die Bestimmungsgleichung:

Min[EB/N0]=lim

Da hier der Quotient im Grenzübergang R → 0 das Ergebnis „0 geteilt durch 0” liefert, ist hier die Regel anzuwenden: Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich R = 0 ein. Mit x = 2R lautet das Ergebnis:

{\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} - 1} { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} } { 1} \hspace{0.05cm}\bigg |_{x=0} = {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693} \hspace{0.05cm}.

(3)  In logarithmierter Form erhält man:

{\rm Min}\hspace{0.1cm}[10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})] = 10\cdot {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}} \hspace{0.05cm}.

(4)  Der Abszissenwert lautet somit in nichtlogarithmierter Form: EB/N0 = 1. Daraus folgt mit C = R:

\frac{2^{2C} - 1} { 2 C} \stackrel{!}{=} 1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5} \hspace{0.05cm}.

(5)  Für R = 1 ist EB = ES. Deshalb gilt:

C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm} C(E_{\rm S}/{N_0}) = 1 \hspace{0.05cm}.

Aus der Tabelle auf der Angabenseite ist abzulesen:

C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.

Der dazugehörige dB–Wert ist 10 · lg (EB/N0) = 1.76 dB.

Zum gleichen Ergebnis kommt man mit R = 1 über die Gleichung E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{4 - 1} { 2 } = 1.5 \hspace{0.05cm}.

(6)  Richtig ist der Lösungsvorschlag 2, wie an einem Beispiel gezeigt werden soll:

  • Gesucht ist die Kanalkapazität C für 10 · lg (EB/N0) = 15 dB  ⇒  EB/N0 = 31.62. Dann gilt entsprechend dem Lösungsvorschlag 1 mit x = 2C:
31.62 = \frac{2^{x} - 1} { x} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 31.62 \cdot x = 2^{x} - 1 \hspace{0.05cm}.

Die Lösung x = 7.986  ⇒  C = 3.993 (bit/use) kann nur grafisch oder iterativ gefunden werden.

  • Gesucht ist der notwendige Abszissenwert 10 · lg (EB/N0) für die Kapazität C = 4 bit/Symbol:
E_{\rm B}/{N_0} = \frac{2^{2C} - 1} { 2 \cdot C} = \frac{2^8 - 1} { 8 } = 31.875 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB} \hspace{0.05cm}.
Kanalkapazitätskurven als Funktion von 10 · lg (ES/N0) und 10 · lg (EB/N0)

Die Grafik zeigt die AWGN–Kanalkapazität abhängig von

  • 10 · lg (ES/N0)  ⇒  rote Kurve und rote Zahlen;
    diese geben die Kanalkapazität C für das vorgegebene 10 · lg (ES/N0) an;
  • 10 · lg (EB/N0)  ⇒  grüne Kurve und und grüne Zahlen;
    diese geben das erforderliche 10 · lg (EB/N0) für die vorgegebene Kanalkapazität C an.


Der Schnittpunkt der beiden Kurven liegt bei 1.76 dB.