Exercise 4.6: OVSF Codes
Die Spreizcodes für UMTS sollen
- alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- möglichst flexibel sein, um unterschiedliche J⇒ Spreizfaktoren zu realisieren.
Ein Beispiel hierfür sind die so genannten Codes mit variablem Spreizfaktor (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von J=4 bis J=512 bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code C zwei neue Codes
- (+C +C),
- (+C −C).
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel J=4. Nummeriert man die Spreizfolgen von 0 bis J –1 durch, so ergeben sich hier die Spreizfolgen
- \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},
- \langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.
Nach dieser Nomenklatur gibt es für den Spreizfaktor J = 8 die Spreizfolgen \langle c_{\nu}^{(0)} \rangle, \ \text{...} \ ,\langle c_{\nu}^{(7)} \rangle.
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor J = 4 verwendet werden oder die drei gelb hinterlegten Codes – einmal mit J = 2 und zweimal mit J = 4.
Hinweise:
- Die Aufgabegehört zum Kapitel Nachrichtentechnische Aspekte von UMTS.
- Bezug genommen wird insbesondere auf die Seite Spreizcodes und Verwürfelung bei UMTS.
Fragebogen
Musterlösung
(1) Die Grafik zeigt die OVSF–Baumstruktur für J = 8 Nutzer. Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.
(2) Wird jedem Nutzer ein Spreizcode mit J = 8 zugewiesen, so können \underline{K_{\rm max} = 8} Teilnehmer versorgt werden.
(3) Wenn drei Teilnehmer mit J = 4 versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit J = 8 bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ \underline{K = 5}.
(4) Wir bezeichnen mit
- K_{4} = 2 die Anzahl der Spreizfolgen mit J = 4,
- K_{8} = 1 die Anzahl der Spreizfolgen mit J = 8,
- K_{16} = 2 die Anzahl der Spreizfolgen mit J = 16,
- K_{32} = 8 die Anzahl der Spreizfolgen mit J = 32.
Dann muss folgende Bedingung erfüllt sein:
- K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.
- Wegen 2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32 ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA.
- Die zweimalige Bereitstellung des Spreizgrads J = 4 blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit J = 8, bleiben auf der J = 8–Ebene noch 3 der 8 Äste zu belegen, usw. und so fort.