Exercise 3.8: Once more Mutual Information

From LNTwww
Revision as of 16:53, 9 October 2018 by Guenter (talk | contribs)

„Wahrscheinlichkeiten” $P_{ XY }$  und  $P_{ XW }$

Wir betrachten das Tupel $Z = (X, Y)$, wobei die Einzelkomponenten $X$ und $Y$ jeweils ternäre Zufallsgrößen darstellen:

$$X = \{ 0 , 1 , 2 \} , \hspace{0.3cm}Y= \{ 0 , 1 , 2 \}.$$

Die gemeinsame Wahrscheinlichkeitsfunktion $P_{ XY }(X, Y)$ beider Zufallsgrößen ist in der oberen Grafik angegeben. In der Aufgabe 3.8Z wird diese Konstellation ausführlich analysiert. Man erhält als Ergebnis (alle Angaben in „bit”):

  • $H(X) = H(Y) = \log_2 (3) = 1.585,$
  • $H(XY) = \log_2 (9) = 3.170,$
  • $I(X, Y) = 0,$
  • $H(Z) = H(XZ) = 3.170,$
  • $I(X, Z) = 1.585.$

Desweiteren betrachten wir hier die Zufallsgröße $W = \{ 0, 1, 2, 3, 4 \}$, deren Eigenschaften sich aus der Verbundwahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ nach der unteren Skizze ergeben. Die Wahrscheinlichkeiten sind in allen weiß hinterlegten Feldern jeweils $0$.

Gesucht ist in der vorliegenden Aufgabe die Transinformation zwischen

  • den Zufallsgrößen $X$ und $W$   ⇒   $I(X; W)$,
  • den Zufallsgrößen $Z$ und $W ⇒ I(Z; W)$.



Hinweise:


Fragebogen

1

Wie könnten die Größen $X$, $Y$ und $W$ zusammenhängen?

$W = X + Y$,
$W = X - Y + 2$,
$W = Y - X + 2$.

2

Welche Transinformation besteht zwischen den Zufallsgrößen $X$ und $W$?

$I(X; W) \ = \ $

$\ \rm bit$

3

Welche Transinformation besteht zwischen den Zufallsgrößen $Z$ und $W$?

$I(Z; W) \ = \ $

$\ \rm bit$

4

Welche der nachfolgenden Aussagen sind zutreffend?

Es gilt $H(ZW) = H(XW)$.
Es gilt $H(W|Z) = 0$.
Es gilt $I(Z; W) > I(X; W)$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Mit $X = \{0, 1, 2\}$, $Y = \{0, 1, 2\}$ gilt $X + Y = \{0, 1, 2, 3, 4\}$. Auch die Wahrscheinlichkeiten stimmen mit der gegebenen Wahrscheinlichkeitsfunktion überein.
  • Die Überprüfung der beiden anderen Vorgaben zeigt, dass auch $W = X – Y + 2$ möglich ist, nicht jedoch $W = Y – X + 2$.


(2)  Aus der 2D–Wahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ auf der Angabenseite erhält man für

  • die Verbundentropie:
$$H(XW) = {\rm log}_2 \hspace{0.1cm} (9) = 3.170\,{\rm (bit)} \hspace{0.05cm},$$
  • die Wahrsacheinlichkeitsfunktion der Zufallsgröße $W$:
$$P_W(W) = \big [\hspace{0.05cm}1/9\hspace{0.05cm}, \hspace{0.05cm} 2/9\hspace{0.05cm},\hspace{0.05cm} 3/9 \hspace{0.05cm}, \hspace{0.05cm} 2/9\hspace{0.05cm}, \hspace{0.05cm} 1/9\hspace{0.05cm} \big ]\hspace{0.05cm},$$
  • die Entropie der Zufallsgröße $W$:
$$H(W) = 2 \cdot \frac{1}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{1} + 2 \cdot \frac{2}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{2} + \frac{3}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{3} {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$

Mit $H(X) = 1.585 \ \rm bit$ (wurde vorgegeben) ergibt sich somit für die Mutual Information:

$$I(X;W) = H(X) + H(W) - H(XW) = 1.585 + 2.197- 3.170\hspace{0.15cm} \underline {= 0.612\,{\rm (bit)}} \hspace{0.05cm}.$$

Das linke Schaubild verdeutlicht die Berechnung der Transinformation $I(X; W)$ zwischen der ersten Komponente $X$ und der Summe $W$.

Zur Berechnung der Transinformation
Verbundwahrscheinlichkeit zwischen '"`UNIQ-MathJax58-QINU`"' und '"`UNIQ-MathJax59-QINU`"'

(3)  Die zweite Grafik zeigt die Verbundwahrscheinlichkeit $P_{ ZW }(⋅)$. Das Schema besteht aus $5 · 9 = 45$ Feldern im Gegensatz zur Darstellung von $P_{ XW }(⋅)$ auf der Angabenseite mit $3 · 9 = 27$ Feldern.

  • Von den $45$ Feldern sind aber auch nur neun mit Wahrscheinlichkeiten ungleich $0$ belegt. Für die Verbundentropie gilt:   $H(ZW) = 3.170\,{\rm (bit)} \hspace{0.05cm}.$
  • Mit den weiteren Entropien $H(Z) = 3.170\,{\rm (bit)}\hspace{0.05cm}$ und $H(W) = 2.197\,{\rm (bit)}\hspace{0.05cm}$ entsprechend der Aufgabe 3.8Z bzw. der Teilfrage (2) dieser Aufgabe erhält man für die Transinformation:
$$I(Z;W) = H(Z) + H(W) - H(ZW) \hspace{0.15cm} \underline {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$


(4)  Alle drei Aussagen treffen zu, wie auch aus dem oberen Schaubild ersichtlich ist. Wir versuchen eine Interpretation dieser numerischen Ergebnisse:

  • Die Verbundwahrscheinlichkeit $P_{ ZW }(⋅)$ setzt sich ebenso wie $P_{ XW }(⋅)$ aus neun gleichwahrscheinlichen Elementenungleich 0 zusammen. Damit ist offensichtlich, dass auch die Verbundentropien gleich sind   ⇒   $H(ZW) = H(XW) = 3.170 \ \rm (bit)$.
  • Wenn ich das Tupel $Z = (X, Y)$ kenne, kenne ich natürlich auch die Summe $W = X + Y$. Damit ist $H(W|Z) = 0$.
  • Dagegen ist $H(Z|W) \ne 0$. Vielmehr gilt $H(Z|W) = H(X|W) = 0.973 \ \rm (bit)$.
  • Die Zufallsgröße $W$ liefert also die genau gleiche Information hinsichtlich des Tupels $Z$ wie für die Einzelkomponente $X$. Dies ist die verbale Interpretation der Aussage $H(Z|W) = H(X|W)$.
  • Die gemeinsame Information von $Z$ und $W$   ⇒   $I(Z; W)$ ist größer als die gemeinsame Information von $X$ und $W$   ⇒   $I(X; W)$ , weil $H(W|Z) =0$ gilt, während $H(W|X)$ ungleich $0$ ist, nämlich genau so groß ist wie $H(X)$ :
$$I(Z;W) = H(W) - H(W|Z) = 2.197 - 0= 2.197\,{\rm (bit)} \hspace{0.05cm},$$
$$I(X;W) = H(W) - H(W|X) = 2.197 - 1.585= 0.612\,{\rm (bit)} \hspace{0.05cm}.$$