Exercise 5.9: Selection of OFDM Parameters

From LNTwww
Revision as of 17:37, 22 January 2019 by Guenter (talk | contribs)

Zeitabhängiger Dämfungsverlauf
zweier Mobilfunkkanäle

In dieser Aufgabe sollen einige OFDM–Parameter eines Mobilfunksystems bestimmt werden. Dabei wird von folgenden Voraussetzungen ausgegangen:

  • Die Kohärenzzeit des Kanals ist  $T_{\rm coh} = 0.4 \ \rm ms$.
  • Die maximale Pfadverzögerung sei  $τ_{\rm max} = 25 \ \rm µ s$.
  • Die Datenrate (Bitrate) beträgt  $R_{\rm B} = 1 \ \rm Mbit/s$.
  • Alle Unterträger werden 4–QAM–moduliert.


Um eine gewisse Robustheit des Systems gegenüber zeit– und frequenzselektivem Fading zu gewährleisten, muss die folgende Ungleichung erfüllt werden:

$$T_{\rm{G}} \ll T \ll T_{{\rm{coh}}} - T_{\rm{G}}.$$

Insgesamt soll folgendermaßen vorgegangen werden:

  • Vorläufige Festlegung des Guard–Intervalls  $(T_{\rm G}')$,
  • Bestimmung der optimalen Kernsymboldauer  $(T)$,
  • entsprechende Festlegung der Stützstellenzahl der FFT.


Danach ist eventuell eine erneute Bestimmung einiger Systemgrößen aufgrund der bei den Berechnungen vorgenommen Rundungen erforderlich.

Die Grafik zeigt zwei beispielhafte Dämpfungsverläufe von Mobilfunksystemen in logarithmischer Darstellung.

  • Bei der blauen Kurve geschehen die zeitlichen Veränderungen relativ langsam, bei der roten Kurve viermal so schnell.
  • Demzufolge weist der blaue Kanal eine viermal größere Kohärenzzeit auf als der rote Kanal.



Hinweise:



Fragebogen

1

Bestimmen Sie die minimal sinnvolle Dauer  $T_{\rm G}'$  des „vorläufigen Guard–Intervalls”.

$T_{\rm G}' \ = \ $

$\ \rm µ s$

2

Bestimmen Sie die optimale Kernsymboldauer  $T_{\rm opt}$  als geometrisches Mittel.

$T_{\rm opt} \ = \ $

$\ \rm µ s$

3

Bestimmen Sie die benötigte Anzahl an Nutzträgern.

$N_{\rm Nutz} \ = \ $

4

Geben Sie die daraus resultierende Stützstellenzahl der FFT an.

$N_{\rm FFT} \ = \ $

5

Berechnen Sie die Anzahl  $N_{\rm G}$  der Zeitabtastwerte des Guard–Intervalls und daraus die neue resultierende Schutzzeit  $T_{\rm G}$.

$N_{\rm G} \ = \ $

$T_{\rm G} \ = \ $

$\ \rm µ s$

6

Geben Sie nun anhand Ihrer Berechnungen die Dauer  $T_{\rm R}$  eines Rahmens an.

$T_{\rm R} \ = \ $

$\ \rm µ s$

7

Wie groß ist die Anzahl der insgesamt in einem Rahmen enthaltenen Abtastwerte?

$N_{\rm gesamt} \ = \ $

8

Ermitteln Sie mit den bestimmten Parametern die Nutzträgeranzahl  $N_{\rm Nutz}'$  erneut.

$N_{\rm Nutz}' \ = \ $


Musterlösung

(1)  Mit $T_{\rm G}' = \tau_{\rm max} \hspace{0.15cm}\underline { = 25\ \rm \mu s}$ ist die untere Grenze der Ungleichung $T_{\rm{G}}' \ll T \ll T_{{\rm{coh}}} - T_{\rm{G}}'$ festgelegt. Aber auch die obere Grenze lässt sich nun berechnen, da die Kohärenzzeit $T_{\rm coh} = 400\ \rm \mu s$ bekannt ist.


(2)  Zur sinnvollen Lösung der Ungleichung aus (1) wird das geometrische Mittel verwendet:

$$T_{{\rm{opt}}} = \sqrt {T_{\rm{G}} ' \cdot (T_{{\rm{coh}}} - T_{\rm{G}} ')} = \sqrt {{25\,\,{\rm \mu s}} \cdot ({400\,\,{\rm \mu s}} - {25\,\,{\rm \mu s}})} \hspace{0.15cm}\underline { \approx {97\,\,{\rm \mu s}}}.$$

(3)  Die benötigte Anzahl der Nutzträger ergibt sich aus folgender Gleichung:

$$N_{{\rm{Nutz}}} = \left\lceil {\frac{{R_{{\rm{B}}} \cdot (T + T_{\rm{G}} ')}} {{{\rm{log}_2}(M)}}}\right\rceil = \left\lceil {\frac{10^6\,\,{\rm bit/s} \cdot ({97\,\,{\rm \mu s}} + {25\,\,{\rm \mu s}} )} {{{\rm{log}_2}(4)}}}\right\rceil\hspace{0.15cm}\underline {= 61}.$$

(4)  Die Stützstellenzahl der FFT muss stets eine Zweier–Potenz sein. Daraus folgt:

$$ N_{{\rm{FFT}}} = 2^{\left\lceil {{\rm{log_2}} \hspace{0.05cm}(61 )} \right\rceil } = 2^6\hspace{0.15cm}\underline {= 64}.$$

Ungenutzte Träger können an den Rändern des Spektrums als Guard–Band verwendet werden.


(5)  Wir bezeichnen die gerundete Anzahl der Stützstellen des Guardintervalls mit $N_{\rm{G}}$ ist . Dann gilt:

$$N_{\rm{G}} = \left\lceil {\frac{{T_{\rm{G}} '}} {{T_{{\rm{opt}}} }} \cdot N_{{\rm{FFT}}} } \right\rceil = \left\lceil {\frac{25\,\,{\rm \mu s}} {97\,\,{\rm \mu s}} \cdot 64 } \right\rceil \hspace{0.15cm}\underline {= 17},$$
$$ T_{\rm{G}} = N_{\rm{G}} \cdot \frac{{T_{{\rm{opt}}} }} {{N_{{\rm{FFT}}} }}= 17 \cdot \frac{{97\,\,{\rm \mu s}}} {64}\hspace{0.15cm}\underline { \approx {26\,\,{\rm \mu s}}}.$$

(6)  Die Rahmendauer ergibt sich zu

$$T_{\rm{R}} = T + T_{\rm{G}} = {97\,\,{\rm \mu s}} + {26\,\,{\rm \mu s}}\hspace{0.15cm}\underline {= {123\,\,{\rm \mu s}}}.$$

(7)  Mit den Ergebnissen der Teilaufgaben (4) und (5) erhält man:

$$ N_{\rm{gesamt}} = N_{\rm{FFT}} + N_{\rm{G}} = 64 + 17 \hspace{0.15cm}\underline {= 81}.$$

(8)  Die Neuberechnung ist nötig, da sich die Dauer des Guard–Intervalls geändert haben kann. Gegenüber der Teilaufgabe (3) wird die vorläufige Länge $T_{\rm{G}} '$ durch $T_{\rm{G}} $ ersetzt und man erhält ein geringfügig anderes Ergebnis:

$$N_{{\rm{Nutz}}'} = \left\lceil {\frac{10^6\,\,{\rm bit/s} \cdot ({97\,\,{\rm \mu s}} + {26\,\,{\rm \mu s}} )} {{{\rm{ld}}(4)}}}\right\rceil = \left\lceil 61.5\right\rceil\hspace{0.15cm}\underline {= 62}.$$

Damit ergibt sich aber weiterhin $N_{\rm FFT} = 64$.