Exercise 2.11Z: Once again SSB-AM and Envelope Demodulator
Nebenstehende Grafik zeigt die Ortskurve – also die Darstellung des äquivalenten Tiefpass–Signals in der komplexen Ebene – für ein ESB–AM–System.
Weiter ist bekannt, dass die Trägerfrequenz $f_{\rm T} = 100 \ \rm kHz$ beträgt und dass der Kanal ideal ist:
- $$ r(t) = s(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} r_{\rm TP}(t) = s_{\rm TP}(t) \hspace{0.05cm}.$$
Beim Empfänger wird ein idealer Hüllkurvendemodulator $\rm (HKD)$ eingesetzt.
In der Aufgabe werden folgende Größen benutzt:
- das Seitenband–zu–Träger–Verhältnis
- $$\mu = \frac{A_{\rm N}/2}{A_{\rm T}}\hspace{0.05cm},$$
- die Hüllkurve
- $$a(t) = |s_{\rm TP}(t)| \hspace{0.05cm},$$
- die maximale Abweichung $τ_{\rm max}$ der Nulldurchgänge zwischen Sendesignal $s(t)$ und Trägersignal $z(t)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einseitenbandmodulation.
- Bezug genommen wird insbesondere auf die Seite Seitenband-zu-Träger-Verhältnis.
- Für diese Aufgabe gelten vergleichbare Voraussetzungen wie für die Aufgabe 2.11.
Fragebogen
Musterlösung
- Das äquivalente TP–Signal lautet:
- $$ s_{\rm TP}(t) = 1\,{\rm V} + {\rm j}\cdot 1\,{\rm V}\cdot {\rm e}^{-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \hspace{0.05cm}.$$
- Die Ortskurve ist ein Kreis mit dem Mittelpunkt bei $A_{\rm T} = 1 \ \rm V$.
- Da die Drehung im Uhrzeigersinn erfolgt, handelt es sich um eine USB–AM.
- Der sich drehende (grüne) Zeiger zeigt zum Starzeitpunkt $t = 0$ in Richtung der imaginären Achse.
- Daraus folgt, dass für das Quellensignal gelten wird: $q(t) = A_{\rm N} \cdot \sin(\omega_{\rm N} \cdot t).$
(2) Bei der USB wird nur das untere Seitenband mit der Zeigerlänge $A_{\rm N}/2 = 1 \ \rm V$ übertragen.
- Daraus ergibt sich $A_{\rm N}\hspace{0.15cm}\underline { = 2 \ \rm V}$.
- Für eine Umdrehung in der Ortskurve benötigt der Zeiger die Zeit $200 \ \rm µ s$.
- Der Kehrwert hiervon ist die Frequenz $f_{\rm N}\hspace{0.15cm}\underline { = 5 \ \rm kHz}$.
(3) Entsprechend der Definition auf der Angabenseite und den Ergebnissen der Teilaufgaben (1) und (2) gilt:
- $$ \mu = \frac{A_{\rm N}/2}{A_{\rm T}}\hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$
Damit kann für das äquivalente TP–Signal auch geschrieben werden:
- $$s_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + {\rm j} \cdot \mu \cdot {\rm e}^{-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right),\hspace{0.3cm}{\rm hier}\hspace{0.15cm}\mu = 1 \hspace{0.05cm}.$$
(4) Spaltet man die komplexe Exponentialfunktion mit dem Satz von Euler nach Real– und Imaginärteil auf, so erhält man:
- $$s_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \sin(\omega_{\rm N}\cdot t) + {\rm j} \cos(\omega_{\rm N}\cdot t)\right) \hspace{0.05cm}.$$
Durch Anwendung des „Satzes von Pythagoras” kann hierfür auch geschrieben werden:
- $$a(t) = |s_{\rm TP}(t)| = A_{\rm T} \cdot \sqrt{ (1 + \sin(\omega_{\rm N}\cdot t))^2 + \cos^2(\omega_{\rm N}\cdot t)} = A_{\rm T} \cdot \sqrt{ 2 + 2 \cdot \sin(2\omega_{\rm N}\cdot t)} \hspace{0.05cm}.$$
Die abgefragten Werte lauten mit $A_{\rm T} = 1\ \rm V$:
- $$ a(t = 50\,{\rm \mu s}) \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.3cm}a(t = 100\,{\rm \mu s}) \hspace{0.15cm}\underline {= 1.414\,{\rm V}},\hspace{0.3cm}a(t = 150\,{\rm \mu s}) \hspace{0.15cm}\underline {= 0} \hspace{0.05cm}.$$
Diese Ergebnisse können auch direkt aus der Grafik auf der Angabenseite abgelesen werden.
(5) Ein Hinweis für die Lage der Nulldurchgänge von $s(t)$ gegenüber dem durch das Trägersignal $z(t)$ vorgegebenen Raster liefert die Phasenfunktion $ϕ(t)$.
- Bei der gegebenen Ortskurve können diese Werte zwischen $±π/2\ (±90^\circ)$ annehmen.
- Diese Maximalwerte treten zum Beispiel im Bereich um $t ≈ 150 \ \rm μs$ auf, da hier ein Phasensprung stattfindet.
- Der Zusammenhang zwischen $τ_{\rm max}$ und $\Delta ϕ_{\rm max}$ lautet:
- $$ \tau_{\rm max} = \frac {\Delta \phi_{\rm max}}{2 \pi }\cdot \frac{1 }{f_{\rm T}} = \frac {1}{4}\cdot 10\,{\rm µ s} \hspace{0.15cm}\underline {= 2.5\,{\rmµ s}} \hspace{0.05cm}.$$