Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.2: Simple Two-Path Channel Model

From LNTwww
Revision as of 15:01, 15 April 2020 by Javier (talk | contribs)

Zwei äquivalente Modelle
für den Zweiwege-Kanal

Here we consider a two-way–channel for mobile radio according to the adjacent graph, characterized by the model parameters

k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \tau_{1} = 10\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm}\tau_{2} = 11\,{\rm µ s} \hspace{0.05cm}.

Two different numerical values are considered for the damping factor on the secondary path:

  • k_2 = 2 \cdot 10^{-5}   ⇒   subtasks (1) to (4),
  • k_2 = 10^{-4}   ⇒   subtasks (5) and (6).


An equivalent channel model is shown below, with only the part highlighted in green being considered further. This means:  

  • The basic attenuation (path loss) and the basic propagation time are not taken into account here.
  • The frequency response of this  (k_0, \tau_0)–model is designated  H_0(f) .


An important descriptive parameter of any mobile radio system is the coherence bandwidth  B_{\rm K}, which is defined in the chapter  GWSSUS–Kanalmodell . The coherence bandwidth indicates whether the system can be approximated as non-frequency-selective:

  • This is justified if the signal bandwidth  B_{\rm S}  is significantly smaller than the coherence bandwidth  B_{\rm K}.
  • Otherwise, the mobile radio system is frequency-selective, which requires a more complicated description.


As a simple approximation for the coherence bandwidth, the reciprocal value of pulse broadening is often used in the literature (marked by an apostrophe in our learning tutorial):

B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.




Notes:

  • This task belongs to the topic of the chapter  Mehrwegeempfang beim Mobilfunk.
  • For the solution you also need the speed of light  c = 3 \cdot 10^8 \ \rm m/s.
  • For  k_2  only positive values are used here. However, as you may remember,if the secondary path is created by reflection on a wall, a phase change by  \pi  occurs, resulting in a negative value of k_2.



Questionnaire

1

What length  d_1  does the direct path have?

d_1 \ = \

\ \ \rm km

2

What are the parameters of the simplified model for  k_2 = 2 \cdot 10^{-5}?

k_0 \ = \

\tau_0 \ = \

\ \ \rm µ s

3

Calculate the magnitude of the frequency response   ⇒   |H_0(f)|  of the simplified model for the frequencies  f = 0f = 250 \ \rm kHz  and  f = 500 \ \rm kHz

|H_0(f = 0)| \ = \

|H_0(f = 250 \ \rm kHz)| \ = \

|H_0(f = 500 \ \rm kHz)| \ = \

4

For which signal frequencies  f_{\rm S}  does destructive interference occur here?

f_{\rm S} = 500 \ \rm kHz,
f_{\rm S} = 750 \ \rm kHz,
f_{\rm S} = 1 \ \rm MHz.

5

What is the approximate coherence bandwidth for  k_2 = 2 \cdot 10^{-5}  or.  k_2 = 10^{-4} ?

k_2 = 2 \cdot 10^{-5} \text{:} \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \

$\ \rm MHz
k_2 = 10^{-4} \text{:} \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \

$\ \rm MHz

6

Which statements are correct regarding frequency selectivity if  B_{\rm S}  denotes the signal bandwidth?

For GSM:   (B_{\rm S} = 200 \ \rm kHz)  the channel is frequency selective.
For UMTS:   (B_{\rm S} = 5 \ \rm MHz)  the channel is frequency selective.


Sample solution

(1)  We have \tau_1 = d_1/c  ⇒  d_1 = \tau_1 \cdot c = 10^{-5} \rm s \cdot 3 \cdot 10^8 \ m/s \ \ \underline {= 3 \ km}.


(2)  The damping factor is k_0 = k_2/k_1 \ \ \underline {= 0.2} and the delay time \tau_0 = \tau_2 \ – \tau_1 \ \underline {= 1 \ \ \rm µ s}.

  • The path loss effective for both paths is thus k_1 = 10^{-4} and the basic delay time is \tau_1 = 10 \ \ \rm µ s.

(3)  The impulse location is h_{\rm 0}(\tau) = \delta(\tau) + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.

By Fourier transformation you get the frequency response

H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_0}=1 + k_0 \cdot {\cos}( 2 \pi f \tau_0) + {\rm j}\cdot k_0 \cdot {\sin }( 2 \pi f \tau_0) \hspace{0.05cm},

and thus to the following magnitude of the frequency response: |H_{\rm 0}(f)| = \sqrt{ \left [ 1 + k_0 \cdot {\cos}( 2 \pi f \tau_0)\right ]^2 + k_0^2 \cdot {\sin^2 }( 2 \pi f \tau_0)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1+ k_0 \hspace{0.1cm} \underline {=1.2} \hspace{0.05cm}, |H_{\rm 0}(f = 250\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi/2)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi/2)} = \sqrt{1+ k_0^2} \hspace{0.1cm} \underline {\approx 1.02} \hspace{0.05cm}, |H_{\rm 0}(f = 500\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi)} = {1- k_0} \hspace{0.1cm} \underline {= 0.8} \hspace{0.05cm}.

Magnitude of the frequency response of a two-way channel

The graphic (red curve) shows the function |H_0(f)|.

  • The values you are looking for are marked by the yellow dots.
  • The blue curve refers to the subtask (5) with k_0 = 1 \ \Rightarrow \ k_2 = k_0 \cdot k_1 = 10^{–4}.


(4)  Solution 1 is correct:

  • Destructive interference occurs for |H_0(f)| < 1, for example for f = 500 \ \rm kHz.
  • On the other hand:
|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},
|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 > 1 \hspace{0.05cm}.$ '''(5)'''  The difference $\tau_{\rm max} \ – \tau_{\rm min}$ between the delays in the two paths is equal to $\tau_0 = 1 \ \ \rm µ s$. *So the coherence bandwidth is :B_{\rm K}\hspace{0.01cm}' = {1}/{\tau_{\rm 0} } \hspace{0.1cm} \underline {=1\,{\rm MHz}} \hspace{0.05cm}.$$
  • The result is independent from k_2. It applies to k_2 = 2 \cdot 10^{-5} \Rightarrow k_0 = 0.2 and k_2 = 10^{-4} \Rightarrow k_0 = 1 in the same way.
  • This approximation B_{\rm K}\hspace{0.01cm}' of the coherence bandwidth si shown in the graph.


(6)  Solution 2 is correct:

  • The channel is non-frequency-selective if the coherence bandwidth B_{\rm K} is significantly larger than the signal bandwidth B_{\rm S}.
  • For the given channel, this is true for GSM, but not for UMTS. For UMTS, this is frequency-selective channel.