Digital Filters

From LNTwww
Revision as of 23:10, 20 June 2020 by Andre (talk | contribs)

Open Applet in a new tab

Programmbeschreibung


The applet should clarify the properties of digital filters, whereby we confine ourselves to filters of the order $M=2$. Both non-recursive filters $\rm (FIR$,  Finite Impulse Response$)$  as well as recursive filters $\rm (IIR$,  Infinite Impulse Response$)$.

The input signal $x(t)$ is represented by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$. The output sequence $〈y_ν〉$is calculated, i.e. the discrete-time representation of the output signal $y(t)$.

  • $T_{\rm A}$ denotes the time interval between two samples.
  • We also limit ourselves to causal signals and systems, which means that $x_ν \equiv 0$ and $y_ν \equiv 0$ for $ν \le 0$.


It should also be noted that we denote the initial sequence $〈y_ν〉$ as

(1) the discrete-time impulse response $〈h_ν〉$ if the “discrete-time Dirac function” is present at the input:         $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉,$

(2) the time-discrete step response $〈\sigma_ν〉$ if the “time-discrete step function” is present at the input:         $〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉,$

(3) the discrete-time rectangle response $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time rectangle function” is present at the input:     $〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉;$
        In quotation marks are the beginning of the ones $(2)$ and the position of the last ones $(4)$.


Theoretical background


General block diagram

Each signal $x(t)$ can only be represented on a computer by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$. right |frame| Block diagram of a digital (IIR–) filter $M$–order

  • The time interval $T_{\rm A}$ between two samples is limited by the sampling theorem.
  • We limit ourselves here to causal signals and systems, which means that $x_ν \equiv 0$ for $ν \le 0$.
  • In order to determine the influence of a linear filter with frequency response $H(f)$ on the time-discrete input signal $〈x_ν〉$, it is advisable to describe the filter discrete-time. In the time domain, this happens with the discrete-time impulse response $〈h_ν〉$.
  • On the right you can see the corresponding block diagram. The following therefore applies to the samples of the output signal $〈y_ν〉$ thus holds:
$$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu } \cdot x_{\nu - \mu } + \sum\limits_{\mu = 1}^M {b_\mu } \cdot y_{\nu - \mu } .$$

The following should be noted here:

  • The index $\nu$ refers to sequences, for example at the input $〈x_ν〉$ and output $〈y_ν〉$.
  • On the other hand, we use the index $\mu$ to identify the $a$ and $b$ filter coefficients.
  • The first sum describes the dependency of the current output $y_ν$ on the current input $x_ν$ and on the $M$ previous input values $x_{ν-1}$, ... , $x_{ν-M}$.
  • The second sum indicates the influence of $y_ν$ by the previous values $y_{ν-1}$, ... , $y_{ν-M}$ at the filter output. It specifies the recursive part of the filter.
  • The integer parameter $M$ is called the order of the digital filter. In the program, this value is limited to $M\le 2$.


$\text{Definitions:}$ 

(1)  The output sequence $〈y_ν〉$ is called the discrete-time impulse response $〈h_ν〉$ if the “discrete-time Dirac function” is present at the input:

$$〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉 .$$

(2)  The output sequence $〈y_ν〉$ is called the time-discrete step response $〈\sigma_ν〉$ if the “time-discrete step function” is present at the input:

$$〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉 .$$

(3)  The output sequence $〈y_ν〉$ is called the discrete-time rectangle response  $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time rectangular function” is present at the input:

$$〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉 .$$
The beginning of ones $(2)$ and the position of the last ones $(4)$ are given in single quotes.


Non-recursive filter   ⇒   FIR–filter

right |frame| Non-recursive digital filter  $($FIR filter$)$  $M$ order $\text{Definition:}$ If all feedback coefficients $b_{\mu} = 0$ , one speaks of one non-recursive filter. In the English language literature, the term FIR filter (Finite Impulse Response) is also used for this.

The following applies to the order $M$ applies:

  • The output value $y_ν$ depends only on the current and the previous $M$ input values:
$$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu \cdot x_{\mu - \nu } } .$$
  • Time-discrete impulse response with $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉$:
$$〈h_\mu〉= 〈a_0,\ a_1,\ \text{...},\ a_M〉 .$$


$\text{Example 1:}$  A two-way channel where

  • the signal on the main path arrives undamped compared to the input signal but is delayed by $2\ \rm µ s$ arrives with a delay, and
  • at $4\ \rm µ s$ distance – so absolutely at time $t = 6\ \rm µ s$ – follows an echo with half the amplitude,


can be simulated by a non-recursive filter according to the sketch above, whereby the following parameter values ​​must be set:

$$M = 3,\quad T_{\rm A} = 2\;{\rm{µ s} },\quad a_{\rm 0} = 0,\quad a_{\rm 1} = 1, \quad a_{\rm 2} = 0, \quad a_{\rm 3} = 0.5.$$


$\text{Example 2:}$ Consider a non-recursive filter with the filter coefficients $a_0 = 1,\hspace{0.5cm} a_1 = 2,\hspace{0.5cm} a_2 = 1.$ right|frame|Nichtrekursives Filter

(1) The conventional impulse response is: $h(t) = \delta (t) + 2 \cdot \delta ( {t - T_{\rm A} } ) + \delta ( {t - 2T_{\rm A} } ).$
        ⇒   discrete-time impulse response: $〈h_\mu〉= 〈1,\ 2,\ 1〉 .$

(2)   The frequency response $H(f)$ is the Fourier transform of $h(t)$. By applying the displacement theorem:

$$H(f) = 2\big [ {1 + \cos ( {2{\rm{\pi }\cdot }f \cdot T_{\rm A} } )} \big ] \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }fT_{\rm A} }\hspace{0.5cm}\Rightarrow \hspace{0.5cm}H(f = 0) = 4.$$

(3)   It follows that the time-discrete step response $〈\sigma_ν〉$ tends to become $4$ for large $\nu$.

(4)   The discrete-time convolution of the input sequence $\left\langle \hspace{0.05cm}{x_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;0,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$  with $\left\langle \hspace{0.05cm}{h_\nu } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1 } \hspace{0.05cm}\right\rangle$  results

$$\left\langle \hspace{0.05cm}{y_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;2,\;1,\;0,\;1,\;2,\;1,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$

(5)   The discrete-time convolution of the input sequence $\left\langle \hspace{0.05cm}{x_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;1,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$  with  $\left\langle \hspace{0.05cm}{h_\nu } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1 } \hspace{0.05cm}\right\rangle$  results

$$\left\langle \hspace{0.05cm}{y_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;3,\;3,\;2,\;2,\;1,\;0,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$


Recursive filter   ⇒   IIR filter

right|frame|First order recursive filter $\text{Definition:}$ 

  • If at least one of the feedback coefficients is $b_{\mu} \ne 0$, then this is referred to as a recursive filter (see graphic on the right). The term IIR filter  (Infinite Impulse Response) is also used for this, particularly in the English-language literature. This filter is dealt with in detail in the trial implementation.


  • If all forward coefficients are also identical $a_\mu = 0$ with the exception of $a_0$, a purely recursive filter is available (see graphic on the left).

left|frame| Purely recursive first order filter


In the following we restrict ourselves to the special case “purely recursive filter of the first order”. This filter has the following properties:

  • The output value $y_ν$ depends (indirectly) on an infinite number of input values:
$$y_\nu = \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot x_{\nu - \mu } .}$$
  • This shows the following calculation:
$$y_\nu = a_0 \cdot x_\nu + b_1 \cdot y_{\nu - 1} = a_0 \cdot x_\nu + a_0 \cdot b_1 \cdot x_{\nu - 1} + {b_1} ^2 \cdot y_{\nu - 2} = a_0 \cdot x_\nu + a_0 \cdot b_1 \cdot x_{\nu - 1} + a_0 \cdot {b_1} ^2 \cdot x_{\nu - 2} + {b_1} ^3 \cdot y_{\nu - 3} = \text{...}. $$
  • By definition, the discrete-time impulse response is the same as the output sequence if there is a single "one" at $t =0$ at the input.
$$h(t)= \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot \delta ( {t - \mu \cdot T_{\rm A} } )}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0, \ a_0\cdot {b_1}, \ a_0\cdot {b_1}^2 \ \text{...} \hspace{0.05cm}〉.$$

$\text{Conclusion:}$  With a recursive filter, the (time-discrete) impulse response extends to infinity with $M = 1$:

  • For reasons of stability, $b_1 < 1$ must apply.
  • With $b_1 = 1$ the impulse response $h(t)$ would extend to infinity and with $b_1 > 1$ the variable $h(t)$ would even continue to infinity.
  • With such a recursive filter of the first order, each individual Dirac line is exactly the factor $b_1$ smaller than the previous Dirac line:
$$h_{\mu} = h(\mu \cdot T_{\rm A}) = {b_1} \cdot h_{\mu -1}.$$


frame| Discrete-time impulse response | rechts $\text{Example 3:}$  The graphic opposite shows the discrete-time impulse response $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉of a recursive filter of the first order with the parameters $a_0 = 1$ and $b_1 = 0.6$. *The (time-discrete) course is exponentially falling and extends to infinity. *The ratio of the weights of two successive Diracs is $b_1 = 0.6$. <div style="clear:both;"> </div> </div> ==='"`UNIQ--h-5--QINU`"'Recursive filter as a sine generator=== [[Datei:P_ID622__Sto_A_5_4.png|right|frame|'''Changing the''' proposed filter structure '''to''' $T_{\rm A}$]] The graphic shows a second-order digital filter that is suitable for generating a time-discrete sine function on a digital signal processor (DSP) if the input sequence $\left\langle \hspace{0.05cm} {x_\nu } \hspace{0.05cm}\right\rangle$  a (time-discrete) Dirac function is: :'"`UNIQ-MathJax16-QINU`"' The five filter coefficients result from the: [https://de.wikipedia.org/wiki/Z-Transformation $Z$ transformation]: :'"`UNIQ-MathJax17-QINU`"' After implementing this equation using a second-order recursive filter, the following filter coefficients are obtained: :'"`UNIQ-MathJax18-QINU`"' *The filter coefficients $a_0$ and $a_2$ can be omitted and $b_2=-1$ has a fixed value. *The angular frequency $\omega_0$ of the sine wave is therefore only determined by $a_0$ and $a_0$. <div class="greybox"> $\text{Example 3:}$  Let $a_1 = 0.5$, $b_1 = \sqrt 3$, $x_0 = 1$ and $x_{\nu \hspace{0.05cm}\ne\hspace{0.05cm} 0} = 0$. '''(1)'''  Then the following applies to the initial values $y_\nu$ at times $\nu \ge 0$:<br> :*  $y_0 = 0;$ :*  $y_1 = 0.5$                                                                                         ⇒  the „$1$” at the input only has an effect at time $\nu = 1$ because of $a_0= 0$ at the output; :*  $y_2 = b_1 \cdot y_1 - y_0 = {\sqrt 3 }/{2} \approx 0.866$                             ⇒   with $\nu = 2$ the recursive part of the filter also takes effect; :*  $y_3 = \sqrt 3 \cdot y_2 - y_1 = \sqrt 3 \cdot {\sqrt 3 }/{2} - {1}/{2} = 1$          ⇒  for  $\nu \ge 2$  the filter is purely recursive:     $y_\nu = b_1 \cdot y_{\nu - 1} - y_{\nu - 2}$; :*  $y_4 = \sqrt 3 \cdot y_3 - y_2 = \sqrt 3 \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$ :*  $y_5 = \sqrt 3 \cdot y_4 - y_3 = \sqrt 3 \cdot {\sqrt 3 }/{2} - 1 = 0.5;$ :*  $y_6 = \sqrt 3 \cdot y_5 - y_4 = \sqrt 3 \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;$ :*  $y_7 = \sqrt 3 \cdot y_6 - y_5 = \sqrt 3 \cdot 0 - {1}/{2} = - 0.5.$ '''(2)'''  By continuing the recursive algorithm one gets for large $\nu$–values:     $y_\nu = y_{\nu - 12}$   ⇒   $T_0/T_{\rm A}= 12.$ <div style="clear:both;"> </div> </div> =='"`UNIQ--h-6--QINU`"'Test execution== [[Datei:Exercises_binomial_fertig.png|right]] *First select the number '''1''' ... '''10''' of the task to be processed. *A task description is displayed. The parameter values ​​are adjusted. *Solution after pressing "sample solution". *The number '''0''' corresponds to a "reset": Same setting as when the program was started. <br clear="all"> <div class="bluebox"> '''(1)'''  The filter coefficients are $a_0=0.25$, $a_1=0.5$, $a_2=0.25$, $b_1=b_2=0$. Which filter is it?<br>        Interpret the impulse response $〈h_ν〉$, the step response $〈\sigma_ν〉$ and the rectangular response $〈\rho_ν^{(2, 8)}〉$ each in a time-discrete representation. <div style="clear:both;"> </div> </div> :*  Due to the missing $b$ coefficients, it is a non-recursive digital filter ⇒   '''FIR filter''' (''Finite Impulse Response''). :*  The impulse response consists of $M+1=3$ Dirac lines according to the $a$ coefficients: $〈h_ν〉= 〈a_0, \ a_1,\ a_2〉= 〈0.25, \ 0.5,\ 0.25,\ 0, \ 0, \ 0,\text{...}〉 $. :*  The step response is: $〈\sigma_ν〉= 〈0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1,\text{...}〉 $. The final value is equal to the DC signal transfer factor $H(f=0)=a_0+a_1+a_2 = 1$. :*  The distortions with rise and fall can also be seen from the rectangular response $〈\rho_ν^{(2, 8)}〉= 〈0,\ 0, 0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1, \ 1, \ 0.75, \ 0.25, \ \text{...}〉$. <div class="bluebox"> '''(2)'''  How do the results differ with $a_2=-0.25$? <div style="clear:both;"> </div> </div> :*  Taking into account $H(f=0)= 0.5$ there are comparable consequences   ⇒   Step response:    $〈\sigma_ν〉= 〈0.25, \ 0.75,\ 0.5,\ 0.5, \ 0.5, \ 0.5,\text{...}〉 $. <div class="bluebox"> '''(3)'''  Now let the filter coefficients $a_0=1$, $b_1=0.9$ and $a_1=a_2= b_2=0$. Which filter is it? Interpret the impulse response $〈h_ν〉$. <div style="clear:both;"> </div> </div> :*  It is a recursive digital filter   ⇒   '''IIR filter'''  (''Infinite Impulse Response'')  of the first order. It is the discrete-time analogue of the RC low pass. :*  Starting from $h_0= 1$ is $h_1= h_0 \cdot b_0= 0.9$, $h_2= h_1 \cdot b_0= b_0^2=0.81$, $h_3= h_2 \cdot b_0= b_0^3=0.729$,  and so on   ⇒   $〈h_ν〉$  extends to infinity. :*  Impulse response  $h(t) = {\rm e}^{-t/T}$  with  $T$:  intersection $($Tangente bei  $t=0$, Abscissa$)$   ⇒   $h_\nu= h(\nu \cdot T_{\rm A}) = {\rm e}^{-\nu/(T/T_{\rm A})}$  with  $T/T_{\rm A} = 1/(h_0-h_1)= 10$. :*  So: The values ​​of the continuous time differ from the discrete-time impulse response. This results in the values $1.0, \ 0.9048,\ 0.8187$ ... <div class="bluebox"> '''(4)'''  The filter setting is retained. Interpret the step response $〈h_ν〉$ and the rectangular response $〈\rho_ν^{(2, 8)}〉$. What is the value for $H(f=0)$? <div style="clear:both;"> </div> </div> :*  The step response is the integral over the impulse response:   $\sigma(t) = T \cdot (1-{\rm e}^{-t/T}) ]$   ⇒   $\sigma_\nu= 10 \cdot (1-{\rm e}^{-\nu/10})$   ⇒   $\sigma_0=1$,  $\sigma_1=1.9$,  $\sigma_2=2.71$, ... :*  For large $\nu$ values, the (time-discrete) step response tends to the DC signal transmission factor $H(f=0)= 10$:  $\sigma_{40}=9.867$,  $\sigma_{50}=9.954$,  $\sigma_\infty=10$. :* The rectangular response $〈\rho_ν^{(2, 8)}〉$ increases with a delay of $2$ in the same way as $〈\sigma_ν〉$. In the area $\nu \ge 8$ the $\rho_ν$ values decrease exponentially. <div class="bluebox"> '''(5)'''  Wir betrachten weiterhin das Filter mit  $a_0=1$,  $b_1=0.9$,  $a_1=a_2= b_2=0$.  Wie lautet die Ausgangsfolge  $〈y_ν〉$ für die Eingangsfolge  $〈x_ν〉= 〈1,\ 0,\ -0.5〉$? <br>        ''Hinweis'':  Die Aufgabe lässt sich ebenfalls mit diesem Programm lösen, obwohl die hier betrachtete Konstellation nicht direkt einstellbar ist. <div style="clear:both;"> </div> </div> :*  Man behilft sich, indem man den Koeffizienten  $a_2=-0.5$  setzt und dafür die Eingangsfolge auf   $〈x_ν〉= 〈1,\ 0,\ 0,\ \text{ ...}〉$   ⇒   „Diracfunktion” reduziert. :*  Die tatsächliche Impulsantwort dieses Filters $($mit  $a_2=0)$  wurde in Aufgabe  '''(3)'''  ermittelt:   $h_0= 1$,   $h_1= 0.9$,   $h_2= 0.81$,   $h_3= 0.729$,   $h_4= 0.646$.   :*  Die Lösung dieser Aufgabe lautet somit:   $y_0 = h_0= 1$,   $y_1= h_1= 0.9$,   $y_2 =h_2-h_0/2= 0.31$,   $y_3 =h_3-h_1/2= 0.279$,   $y_4 =h_4-h_2/2= 0.251$.   :*  Vorsicht:  Sprungantwort und Rechteckantwort beziehen sich nun auf das fiktive Filter $($mit  $a_2=-0.5)$  und nicht auf das eigentliche Filter $($mit  $a_2=0)$. <div class="bluebox"> '''(6)'''  Betrachten und interpretieren Sie die Impulsanwort und die Sprungantwort für die Filterkoeffizienten  $a_0=1$,  $b_1=1$,  $a_1=a_2= b_2=0$.  <div style="clear:both;"> </div> </div> :*  '''Das System ist instabil''':   Eine zeitdiskrete Diracfunktion am Eingang  $($zur Zeit  $t=0)$  bewirkt im Ausgangsignal unendlich viele Diracs gleicher Höhe. :*  Eine zeitdiskrete Sprungfunktion am Eingang bewirkt im Ausgangsignal unendlich viele Diracs mit monoton ansteigenden Gewichten (bis ins Unendliche). <div class="bluebox"> '''(7)'''  Betrachten und interpretieren Sie Impulsanwort und Sprungantwort für die Filterkoeffizienten  $a_0=1$,  $b_1=-1$,  $a_1=a_2= b_2=0$.  <div style="clear:both;"> </div> </div> :*  Im Gegensatz zur Aufgabe  '''(6)'''  sind hier die Gewichte der Impulsantwort  $〈h_ν〉$  nicht konstant gleich  $1$, sondern alternierend  $\pm 1$.  Das System ist ebenfalls instabil. :*  Bei der Sprunganwort  $〈\sigma_ν〉$  wechseln sich dagegen die Gewichte alternierend zwischen  $0$  $($bei geradem $\nu)$  und  $1$  $($bei ungeradem $\nu)$  ab. <div class="bluebox"> '''(8)'''  Wir betrachten den  „Sinusgenerator”:  $a_1=0.5$,  $b_1=\sqrt{3}= 1.732$,  $b_2=-1.$  Vergleichen Sie die Impulsantwort mit den berechneten Werten in  $\text{Beispiel 4}$. <br>        Wie beinflussen die Parameter  $a_1$  und  $b_1$  die Periodendauer  $T_0/T_{\rm A}$  und die Amplitude  $A$  der Sinusfunktion? <div style="clear:both;"> </div> </div> :*  $〈x_ν〉=〈1, 0, 0, \text{...}〉$   ⇒   $〈y_ν〉=〈0, 0.5, 0.866, 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5, 0, \text{...}〉$   ⇒   '''Sinus''',  Periode  $T_0/T_{\rm A}= 12$,  Amplitude  $1$. :*  Die Vergrößerung/Verkleinerung von  $b_1$  führt zur größeren/kleineren Periodendauer  $T_0/T_{\rm A}$  und zur größeren/kleineren Amplitude  $A$.  Es muss  $b_1 < 2$  gelten. :*  $a_1$  beinflusst nur die Amplitude, nicht die Periodendauer.  Für  $a_1$  gibt es keine Wertebegrenzumg.  Bei negativem  $a_1$  ergibt sich die Minus–Sinusfunktion. :*  '''Gibt es hier keine Diskrepanz zu h(t) wertkontinuierlich ???''' <div class="bluebox"> '''(9)'''  Die Grundeinstellung bleibt erhalten.  Mit welchen  $a_1$  und  $b_1$ ergibt sich eine Sinusfunktion mit Periodendauer  $T_0/T_{\rm A}=16$  und Amplitude  $A=1$? <div style="clear:both;"> </div> </div> :*  Durch Probieren erreicht man mit  $b_1= 1.8478$  tatsächlich die Periodendauer  $T_0/T_{\rm A}=16.$  Allerdings erhöht sich dadurch die Amplitude auf  $A=1.307$. :*  Die Anpassung des Parameters   $a_1= 0.5/1.307=0.3826$  führt dann zur gewünschten Amplitude  $A=1$. :*  Oder man kann das auch wie im Beispiel berechnen:  $b_1 = 2 \cdot \cos ( {2{\rm{\pi }}\cdot{T_{\rm A}}/{T_0 }})= 2 \cdot \cos (\pi/8)=1.8478$,     $a_1 = \sin (\pi/8)=0.3827$. <div class="bluebox"> '''(10)'''  Wir gehen weiter vom „Sinusgenerator” aus.  Welche Modifikationen muss man vornehmen, um damit einen „Cosinus” zu generieren? <div style="clear:both;"> </div> </div> :*  Mit  $a_1=0.5$,  $b_1=\sqrt{3}= 1.732$,  $b_2=-1$  sowie  $〈x_ν〉=〈1, 1, 1, \text{...}〉$  ist die Ausgangsfolge  $〈y_ν〉$  das zeitdiskrete Analogon der Sprungantwort  $\sigma(t)$.

  •   Es fehlen noch einige Statements


Zur Handhabung des Applets


Über die Autoren


Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in a new tab