Contents
Allgemeine Beschreibung
Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden, die man als Fourierreihe bezeichnet.
Definition: Die Fourierreihe eines periodischen Signals x(t) lautet wie folgt:
- x(t)=A0+∞∑n=1An⋅cos(nω0t)+∞∑n=1Bn⋅sin(nω0t).
Hierbei bezeichnen:
- A0 den Gleichanteil von x(t),
- An die Cosinuskoeffizienten mit n≥1,
- Bn die Sinuskoeffizienten mit n≥1,
- ω0=2π/T0 die Grundkreisfrequenz des periodischen Signals (T0 ist die Periodendauer).
Soll die Fourierreihe mit dem tatsächlichen periodischen Signal x(t) exakt übereinstimmen, so müssen im Allgemeinen unendlich viele Cosinus– und Sinuskoeffizienten zur Berechnung herangezogen werden.
- Bricht man die Fourierreihe ab und verwendet jeweils nur N dieser Koeffizienten An und Bn, so ergibt sich bis auf einige Sonderfälle ein etwas anderer Funktionsverlauf:
- xN(t)=A0+N∑n=1An⋅cos(nω0t)+N∑n=1Bn⋅sin(nω0t).
- Zwischen dem periodischen Signal x(t) und der Fourierreihenapproximation xN(t) gilt der Zusammenhang:
- x(t)=lim
- Ist N \cdot f_0 die höchste im Signal x(t) vorkommende Frequenz, so gilt natürlich x_N(t) = x(t).
\text{Beispiel 1:} Wir betrachten zwei periodische Rechtecksignale, jeweils mit der Periodendauer T_0 und der Grundkreisfrequenz \omega_0 = 2\pi/T_0.
- Für das oben skizzierte gerade Zeitsignal gilt: x_{\rm g}(-t) = x_{\rm g}(t).
- Dagegen ist die unten dargestellte Funktion ungerade: x_{\rm u}(-t) = -x_{\rm u}(t).
In Formelsammlungen findet man die Fourierreihendarstellungen beider Signale:
- x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0 t)-\frac{1}{3}\cdot \cos(3 \omega_0 t)+\frac{1}{5}\cdot\cos(5 \omega_0 t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],
- x_{\rm u}(t)=\frac{4}{\pi}\left [ \sin(\omega_0 t)+\frac{1}{3}\cdot\sin(3 \omega_0 t)+\frac{1}{5}\cdot\sin(5 \omega_0 t)+ \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm} \right ].
- Wegen der allgemeingültigen Beziehung
- 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4}
ergeben sich die Amplituden (Maximalwerte) der beiden Rechtecksignale jeweils zu 1.
- Dies lässt sich auch anhand der Signalverläufe in der obigen Grafik verifizieren:
- x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4) = 1.
Berechnung der Fourierkoeffizienten
Der Fourierkoeffizient A_0 gibt den Gleichanteil an, der durch Mittelung über den Signalverlauf x(t) bestimmt werden kann. Aufgrund der Periodizität genügt die Mittelung über eine Periode:
- A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.
Der Integrationsbereich kann aber auch von t = 0 bis t = T_0 (oder über eine anders festgelegte gleich lange Periode) gewählt werden.
Die Bestimmung der Fourierkoeffizienten A_n und B_n (n \ge 1) beruht auf der Eigenschaft, dass die harmonischen Cosinusfunktionen und Sinusfunktionen so genannte Orthogonalfunktionen sind. Für diese gilt:
- \int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad falls \it \quad m=n,\atop \rm sonst} \right.
- \int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad falls \it \quad m=n,\atop \rm sonst} \right.
- \int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \quad \rm f\ddot{u}r\quad alle \ \it m, \ n.
\text{Fazit:} Berücksichtigt man diese Gleichungen, so ergeben sich die Cosinuskoeffizienten A_n und die Sinuskoeffizienten B_n wie folgt:
- A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,
- B_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\sin(n \omega_0 t)\,{\rm d}t.
Das Lernvideo Zur Berechnung der Fourierkoeffizienten verdeutlicht diese Gleichungen.
\text{Beispiel 2:} Wir betrachten die gezeichnete periodische Zeitfunktion
- x(t)=0.4+0.6\cdot \cos(\omega_0 t)-0.3\cdot\sin(3 \omega_0 t).
Da das Integral der Cosinus– und der Sinusfunktion über jeweils eine Periode identisch Null ist, erhält man für den Gleichsignalkoeffizienten A_0 = 0.4.
Die Bestimmungsgleichung für den Cosinuskoeffizienten A_1 lautet (Integrationsbereich von t = 0 bis t = T_0):
- \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0 t)\,{\rm d}t + \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0 t)\,{\rm d}t - \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3 \omega_0 t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*}
Das letzte Integral ist aufgrund der Orthogonalität gleich Null; das erste ist ebenfalls Null (Integral über eine Periode).
- Nur der mittlere Term liefert hier einen Beitrag zu A_1, nämlich 2 · 0.6 · 0.5 = 0.6.
- Bei allen weiteren (n \ge 2) Cosinuskoeffizienten liefern alle drei Integrale den Wert Null, und es gilt somit stets A_{n \hspace{0.05cm}\neq \hspace{0.05cm}1}=0.
Die Bestimmungsgleichungen für die Sinuskoeffizienten B_n lauten entsprechend:
- \begin{align*} B_{\it n}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4 \cdot \sin(n \ \omega_0 t)\,{\rm d}t + \frac{2}{T_0} \cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot \cos(\omega_0 t) \sin(n \omega_0 t)\,{\rm d}t - \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot \sin(3 \omega_0 t) \sin(n \omega_0 t )\,{\rm d}t. \end{align*}
- Für n \hspace{0.05cm}\neq \hspace{0.05cm}3 sind alle drei Integralwerte gleich Null und damit gilt auch B_{n \hspace{0.05cm}\neq \hspace{0.05cm}3} = 0.
- Dagegen liefert für n=3 das letzte Integral einen Beitrag, und man erhält für den Sinuskoeffizienten B_3 = -0.3.
Ausnutzung von Symmetrieeigenschaften
Einige Erkenntnisse über die Fourierkoeffizienten A_n und B_n lassen sich bereits aus den Symmetrieeigenschaften der Zeitfunktion x(t) ablesen.
- Ist das Zeitsignal x(t) eine gerade Funktion ⇒ achsensymmetrisch um die Ordinate (t = 0), so verschwinden alle Sinuskoeffizienten B_n, da die Sinusfunktion selbst eine ungerade Funktion ist ⇒ \sin(-\alpha) = -\sin(\alpha):
- B_n = 0 \hspace{0.4cm}(n = 1, \ 2, \ 3, \text{...}).
- Eine ungerade Funktion x(t) ist punktsymmetrisch um den Koordinatenursprung (t= 0; \ x =0). Deshalb verschwinden hier alle Cosinuskoeffizienten (A_n = 0), da die Cosinusfunktion selbst gerade ist. In diesem Fall ist auch der Gleichanteil A_0 stets Null.
- A_n = 0 \hspace{0.4cm}(n = 0, \ 1, \ 2, \ 3, \text{...}).
- Liegt eine Funktion ohne Gleichanteil vor (A_0 = 0) und ist diese innerhalb einer Periode ungerade ⇒ es gilt x(t) = -x(t - T_0/2), so sind in der Fourierreihendarstellung nur ungerade Vielfache der Grundfrequenz vorhanden. Für die Koeffizienten mit geradzahligem Index gilt dagegen stets:
- A_n = B_n = 0 \hspace{0.4cm}(n = 2, \ 4, \ 6, \text{...}).
- Sind alle Koeffizienten A_n und B_n mit geradzahligem Index (n = 2, \ 4, \ 6, \text{...}) gleich Null und der Koeffizient A_0 \neq 0, so bezieht sich die im letzten Punkt genannte Symmetrieeigenschaft auf den Gleichsignalanteil, und es gilt:
- x(t) = 2 \cdot A_0 - x (t - T_0/2).
Anmerkung: Es können auch mehrere der enannten Symmetrieeigenschaften gleichzeitig erfüllt sein.
Die Symmetrieeigenschaften der Fourierkoeffizienten werden im ersten Teil des Lernvideos Eigenschaften und Genauigkeit der Fourierreihe zusammenfassend dargestellt.
\text{Beispiel 3:} Die oben genannten Eigenschaften werden nun an drei Signalverläufen verdeutlicht.
- x_1(t) ist eine mittelwertbehaftete Funktion ⇒ A_0 \ne 0 und zudem gerade, die dementsprechend ausschließlich durch Cosinuskoeffizienten A_n bestimmt ist (B_n = 0).
- Dagegen sind bei der ungeraden Funktion x_2(t) alle A_n, \ ( n \ge 0) identisch Null.
- Auch die ungerade Funktion x_3(t) beinhaltet nur Sinuskoeffizienten, aber wegen x_3(t) = -x_3(t - T_0/2) ausschließlich für ungeradzahlige Werte von n.
Komplexe Fourierreihe
Wie auf der Seite Darstellung mit Cosinus- und Sinusanteil für den Fall einer harmonischen Schwingung bereits gezeigt wurde, kann man jedes beliebige periodische Signal
- x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t)
auch mit Hilfe der Betrags- und Phasenkoeffizienten darstellen:
- x(t) =C_0+\sum^{\infty}_{n=1}C_{\it n} \cdot\cos(n \omega_0 t-\varphi_n).
Diese modifizierten Fourierkoeffizienten weisen folgende Eigenschaften auf:
- Der Gleichsignalkoeffizient C_0 ist identisch mit A_0.
- Die Betragskoeffizienten lauten mit n\ge 1: C_n = \sqrt{A_n^2 + B_n^2}.
- Für die Phasenkoeffizienten gilt: \varphi_n = \arctan \hspace{0.05cm}(B_n/A_n).
Mit der „Eulerschen Beziehung” \cos(x) + {\rm j} \cdot \sin(x) = {\rm e}^{{\rm j} \hspace{0.05cm}x} erhält man eine zweite Darstellungsvariante der Fourierreihenentwicklung, die von der komplexen Exponentialfunktion ausgeht.
\text{Definition:} Die komplexe Fourierreihe eines periodischen Signals x(t) lautet wie folgt:
- x(t)=\sum^{+\infty}_{ n=- \infty}D_n\cdot {\rm e}^{ {\rm j} \hspace{0.05cm} n \hspace{0.05cm}\omega_0\hspace{0.05cm} t}.
Hier bezeichnen D_n die komplexen Fourierkoeffizienten, die
- aus den Cosinuskoeffizienten A_n und den Sinuskoeffizienten B_n, oder auch
- aus den Betragskoeffizienten C_n sowie den Phasenkoeffizienten \varphi_n
wie folgt berechnet werden können (gültig für n \neq 0):
- D_n = 1/2\cdot (A_n - {\rm j}\cdot B_n) =1/2\cdot C_n\cdot {\rm e}^{- {\rm j} \hspace{0.05cm} \varphi_n }
Die komplexen Fourierkoeffizienten kann man nach folgender Gleichung auch direkt berechnen:
- D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t) \cdot{\rm e}^{-\rm j \hspace{0.05cm}\it n \hspace{0.1cm}\omega_{\rm 0} \hspace{0.05cm}t}\, {\rm d}t.
Solange das Integrationsintervall T_0 erhalten bleibt, kann man es ebenso wie bei den Koeffizienten A_n und B_n beliebig verschieben, zum Beispiel von t = 0 bis t = T_0.
\text{Fazit:} Der Koeffizient D_0 = A_0 ist stets reell. Für die komplexen Koeffizienten mit negativem Laufindex (n < 0) gilt:
- D_{- n}=D_n^{\hspace{0.05cm}\star} =1/2 \cdot (A_n+ {\rm j}\cdot B_n).
Spektrum eines periodischen Signals
Ausgehend von der gerade hergeleiteten komplexen Fourierreihe
- x(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j \it n \omega_{\rm 0} t}
und dem Verschiebungssatz (für den Frequenzbereich) erhält man für das Spektrum eines periodischen Signals x(t):
- X(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).
Dies bedeutet:
- Das Spektrum eines mit T_0 periodischen Signals ist ein Linienspektrum bei ganzzahligen Vielfachen der Grundfrequenz f_0 = 1/T_0.
- Der Gleichanteil liefert eine Diracfunktion bei f=0 mit dem Impulsgewicht A_0.
- Daneben gibt es Diracfunktionen \delta(f \pm n \cdot f_0) bei Vielfachen von f_0, wobei \delta(f - n \cdot f_0) eine Diracfunktion bei f= n \cdot f_0 (also im positiven Frequenzbereich) und \delta(f + n \cdot f_0) eine solche bei der Frequenz f= -n \cdot f_0 (im negativen Frequenzbereich) kennzeichnet.
- Die Impulsgewichte sind im allgemeinen komplex.
Diese Aussagen werden nun anhand zweier Beispiele verdeutlicht.
\text{Beispiel 4:} Wir betrachten – wie im \text{Beispiel 1} zu Beginn dieses Abschnitts - zwei periodische Rechtecksignale, jeweils mit Periodendauer T_0 und Grundfrequenz f_0=1/T_0. Das obere Signal
- x_{\rm g}(t)={4}/{\pi} \cdot \big[\cos(\omega_0 t) - {1}/{3} \cdot \cos(3\omega_0 t)+{1}/{5}\cdot \cos(5\omega_0 t) - \, \text{...} \, + \, \text{...} \big]
ist eine gerade, aus verschiedenen Cosinusanteilen zusammengesetzte Funktion. Die zugehörige Spektralfunktion X_{\rm g}(f) ist damit rein reell.
Begründung: Wie auf der Seite Spektraldarstellung eines Cosinussignals bereits beschrieben wurde, liefert die Grundwelle zwei Diracfunktionen bei \pm f_0, jeweils gewichtet mit 2/\pi.
- Dieses Gewicht entspricht den (im Allgemeinen komplexen) Fourierkoeffizienten D_1 = D_{ - 1}^\ast, die nur im Sonderfall einer geraden Funktion reell sind.
- Weitere Diracfunktionen gibt es bei \pm 3f_0 (negativ), \pm 5f_0 (positiv), \pm 7f_0 (negativ) usw.
- Alle Phasenwerte \varphi_n sind aufgrund der alternierenden Vorzeichen entweder Null oder \pi.
Die unten dargestellte Funktion x_{\rm u}(t) ist ungerade:
- x_{\rm u}(t)={4}/{\pi} \cdot \big[\sin(\omega_0 t)+{1}/{3} \cdot \sin(3\omega_0 t)+{1}/{5} \cdot \sin(5\omega_0 t)+ \, \text{...}\big].
Begründung: Wie im \text{Beispiel 4} auf der Seite Allgemeine Spektraldarstellung bereits beschrieben wurde, liefert hier die Grundwelle zwei Diracfunktionen bei +f_0 (gewichtet mit -\text{j}\cdot 2/\pi) bzw. bei -f_0 (gewichtet mit +\text{j}\cdot 2/\pi).
- Auch alle weiteren Diracfunktionen bei \pm 3f_0, \pm 5f_0, usw. sind rein imaginär und liegen in gleicher Richtung wie die Diracs bei \pm f_0.
- Die beiden Betragsspektren sind gleich: \vert X_{\rm u}(f)\vert = \vert X_{\rm g}(f) \vert.
Das Gibbsche Phänomen
Nicht jedes Signal eignet sich für die Fourierreihendarstellung. Hier einige Einschränkungen:
- Eine wichtige Voraussetzung für die Konvergenz der Fourierreihe ist, dass das Signal nur endlich viele Unstetigkeitsstellen je Periode besitzen darf.
- An denjenigen Stellen t=t_i, an denen x(t) Sprünge aufweist, konvergiert die Reihe gegen den aus dem jeweiligen links– und rechtsseitigen Grenzwert gebildeten arithmetischen Mittelwert.
- In der Umgebung solcher Sprungstellen kommt es in der Reihendarstellung meist zu hochfrequenten Oszillationen. Dieser Fehler ist von prinzipieller Art, das heißt, er ließe sich auch nicht vermeiden, wenn man unendlich viele Summanden berücksichtigen würde. Man spricht vom Gibbschen Phänomen, benannt nach dem Physiker Josiah Willard Gibbs.
- Durch eine Erhöhung von N wird zwar der fehlerhafte Bereich kleiner, nicht jedoch die maximale Abweichung zwischen x(t) und der Fourierreihendarstellung x_N(t). Der maximale Fehler beträgt ca. 9\% der Sprungamplitude – und zwar unabhängig von N.
Das Gibbsche Phänomen und weitere interessante Aspekte zu vergleichbaren Effekten werden im Lernvideo
Eigenschaften der Fourierreihendarstellung behandelt.
\text{Beispiel 5:} In der linken Grafik sehen Sie gepunktet einen Ausschnitt eines periodischen \pm 1–Rechtecksignals und die dazugehörige Fourierreihendarstellung mit N = 1 (blau), N = 3 (rot) und N = 5 (grün) Summanden.
- Die Grundwelle hat hier den Amplitudenwert 4/\pi \approx 1.27.
- Auch mit N = 5 (das bedeutet wegen A_2 = A_4 = 0 drei „relevante” Summanden) unterscheidet sich die Fourierreihe vom anzunähernden Rechtecksignal noch deutlich, vor allem im Bereich der Flanke.
Aus der rechten Grafik ist zu erkennen, dass die Flanke und der innere Bereich mit N = 100 relativ gut nachgebildet werden, es aber an der Sprungstelle aufgrund des Gibbschen Phänomens noch immer zu Überschwingern um 9\% kommt.
- Da hier die Sprungamplituden jeweils gleich 2 sind, ergeben sich die Maximalwerte näherungsweise zu 1.18.
- Mit N = 1000 wären die Überschwinger genau so groß, aber auf einen engeren Raum begrenzt und bei zeitdiskreter Darstellung eventuell nicht mehr zu erkennen.
Aufgaben zum Kapitel
Aufgabe 2.4: Gleichgerichteter Cosinus
Aufgabe 2.5: Einweggleichrichtung
Aufgabe 2.6: Komplexe Fourierreihe
Aufgabe 2.6Z: Betrag und Phase