Exercise 4.14Z: Offset QPSK vs. MSK

From LNTwww
Revision as of 13:41, 9 July 2020 by Javier (talk | contribs) (Text replacement - "[[Modulationsverfahren" to "[[Modulation_Methods")

Koeffizientenzuordnung bei O-QPSK und MSK

Eine Realisierungsmöglichkeit für die  $\rm MSK$  bietet die  „Offset–QPSK”  $\rm (O–QPSK)$, wie aus den  Blockschaltbildern  im Theorieteil hervorgeht.

Beim  „normalen Offset–QPSK–Betrieb”  werden jeweils zwei Bit der Quellensymbolfolge  $〈q_k〉$  einem Bit  $a_{{\rm I}ν}$  im Inphasezweig und sowie einem Bit  $a_{{\rm Q}ν}$  im Quadraturzweig zugeordnet.

Die Grafik zeigt diese Seriell–Parallel–Wandlung in den drei oberen Diagrammen für die ersten vier Bit des grün gezeichneten Quellensignals  $q(t)$.  Dabei ist zu beachten:

  • Die Darstellung der Offset–QPSK gilt für einen rechteckigförmigen Grundimpuls.  Die Koeffizienten  $a_{{\rm I}ν}$  und  $a_{{\rm Q}ν}$  können die Werte  $±1$  annehmen.
  • Durchläuft der Zeitindex der Quellensymbole die Werte  $k =1,$ ... $, 8$, so nimmt die Zeitvariable  $ν$  nur die Werte  $1,$ ... $, 4$  an.
  • Die Skizze berücksichtigt auch den Zeitversatz (Offset) für den Quadraturzweig.


Bei der  „MSK–Realisierung mittels Offset–QPSK”  ist eine Umcodierung erforderlich.  Hierbei gilt mit  $q_k ∈ \{+1, –1\}$  und  $a_k ∈ \{+1, –1\}$:

$$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$

Beispielsweise erhält man unter der Annahme  $a_0 = +1$:

$$a_1 = a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm} a_3 = a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$

Weiter ist zu berücksichtigen:

  • Die Koeffizienten  $a_0 = +1$,  $a_2 = +1$,  $a_4 = -1$  sowie die noch zu berechnenden Koeffizienten  $a_6$  und  $a_8$  werden dem Signal  $s_{\rm I}(t)$  zugeordnet.
  • Dagegen werden die Koeffizienten  $a_1 = +1$  und  $a_3 = -1$  sowie alle weiteren Koeffizienten mit ungeradem Index dem Signal  $s_{\rm Q}(t)$  beaufschlagt.






Hinweise:

  • In  Aufgabe 4.14  wird die zugehörige Phasenfunktion  $ϕ(t)$  ermittelt, wobei ebenfalls der  (normierte)  MSK–Grundimpuls zugrunde liegt:
$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}$$


Fragebogen

1

Wie groß ist die Bitdauer  $T_{\rm B}$  des Quellensignals?

$T_{\rm B} \ = \ $

$\ \rm µ s$

2

Wie groß ist die Symboldauer  $T$  der Offset–QPSK?

$T \ = \ $

$\ \rm µ s$

3

Geben Sie die genannten Amplitudenkoeffizienten der Offset–QPSK an.

$a_{\rm I3} \hspace{0.25cm} = \ $

$a_{\rm Q3} \ = \ $

$a_{\rm I4} \hspace{0.25cm} = \ $

$a_{\rm Q4} \ = \ $

4

Wie groß ist die Symboldauer  $T$  der  MSK?

$T \ = \ $

$\ \rm µ s$

5

Geben Sie die genannten Amplitudenkoeffizienten der MSK an.

$a_5 \ = \ $

$a_6 \ = \ $

$a_7 \ = \ $

$a_8 \ = \ $


Musterlösung

(1)  Aus der oberen Skizze kann man  $T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm µ s}$  ablesen.


(2)  Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer  $T$  doppelt so groß wie die Bitdauer  $T_{\rm B}$:

$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm µ s}} \hspace{0.05cm}.$$


(3)  Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt:

$$ a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},$$
$$a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$
$$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},$$
$$a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$


(4)  Bei der MSK ist die Symboldauer  $T$  gleich der Bitdauer  $T_{\rm B}$:

$$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm µ s}} \hspace{0.05cm}.$$


(5)  Entsprechend der angegebenen Umcodiervorschrift gilt mit  $a_4 = –1$:

$$q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$
$$q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$
$$ q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$
$$q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$