Exercise 3.14: Error Probability Bounds
Für den häufig verwendeten Faltungscode mit
- der Coderate $R = 1/2$,
- dem Gedächtnis $m = 2$, und
- der Übertragungsfunktionsmatrix
- $${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1 + D^2 \hspace{0.05cm}\big ) $$
lautet die erweiterte Pfadgewichtsfunktion:
- $$T_{\rm enh}(X, U) = \frac{UX^5}{1- 2 \hspace{0.05cm}U \hspace{-0.05cm}X} \hspace{0.05cm}.$$
Mit der schon häufiger benutzten Reihenentwicklung $1/(1 \, –x) = 1 + x + x^2 + \text{...} \ $ kann hierfür auch geschrieben werden:
- $$T_{\rm enh}(X, U) = U X^5 \cdot \left [ 1 + (2 \hspace{0.05cm}U \hspace{-0.05cm}X) + (2 \hspace{0.05cm}U\hspace{-0.05cm}X)^2 + (2 \hspace{0.05cm}U\hspace{-0.05cm}X)^3 +\text{...} \hspace{0.10cm} \right ] \hspace{0.05cm}.$$
Die „einfache” Pfadgewichtsfunktion $T(X)$ ergibt sich daraus, wenn man die zweite Variable $U = 1$ setzt.
Anhand dieser beiden Funktionen können Fehlerwahrscheinlichkeitsschranken angegeben werden:
- Die Burstfehlerwahrscheinlichkeit wird durch die Bhattacharyya–Schranke begrenzt:
- $${\rm Pr(Burstfehler)} \le {\rm Pr(Bhattacharyya)} = T(X = \beta) \hspace{0.05cm}.$$
- Dagegen ist die Bitfehlerwahrscheinlichkeit stets kleiner (oder gleich) der Viterbi–Schranke:
- \[{\rm Pr(Bitfehler)} \le {\rm Pr(Viterbi)} = \left [ \frac {\rm d}{ {\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{X=\beta \\ U=1} } \hspace{0.05cm}.\]
Hinweise:
- Die Aufgabe gehört zum Kapitel Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken.
- Der Bhattacharyya–Parameter für BSC lautet: $\beta = 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)}$.
- In obiger Tabelle sind für einige Werte des BSC–Parameters $\varepsilon$ angegeben:
- der Bhattacharyya–Parameter $\beta$,
- die Bhattacharyya–Schranke ${\rm Pr}(\rm Bhattacharyya)$, und
- die Viterbi–Schranke $\rm Pr(Viterbi)$.
- Im Verlauf dieser Aufgabe sollen Sie die entsprechenden Größen für $\varepsilon = 10^{-2}$ und $\varepsilon = 10^{-4}$ berechnen.
- Die vollständige Tabelle finden Sie in der Musterlösung.
Fragebogen
Musterlösung
- $$\beta = 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)} = 2 \cdot \sqrt{0.01 \cdot 0.99} \hspace{0.2cm}\underline {\approx 0.199} \hspace{0.05cm}.$$
Für noch kleinere Verfälschungswahrscheinlichkeiten $\varepsilon$ kann näherungsweise geschrieben werden:
- $$\beta \approx 2 \cdot \sqrt{\varepsilon } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varepsilon = 10^{-4}\hspace{-0.1cm}: \hspace{0.2cm} \beta \hspace{0.2cm}\underline {\approx 0.02} \hspace{0.05cm}.$$
(2) Es gilt ${\rm Pr(Burstfehler)} ≤ {\rm Pr(Bhattacharyya)}$ mit ${\rm Pr(Bhattacharyya)} = T(X = \beta)$.
- Für den betrachteten Faltungscode der Rate 1/2, dem Gedächtnis $m = 2$ und $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$ lautet die Pfadgewichtsfunktion:
- $$T(X) = \frac{X^5 }{1- 2X} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = T(X = \beta) = \frac{\beta^5 }{1- 2\beta}$$
- $$\Rightarrow \hspace{0.3cm}\varepsilon = 10^{-2}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Bhattacharyya)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.199^5 }{1- 2\cdot 0.199} \hspace{0.2cm}\underline {\approx 5.18 \cdot 10^{-4}}\hspace{0.05cm},$$
- $$\hspace{0.85cm} \varepsilon = 10^{-4}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Bhattacharyya)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.02^5 }{1- 2\cdot 0.02} \hspace{0.38cm}\underline {\approx 3.33 \cdot 10^{-9}}\hspace{0.05cm}.$$
(3) Zur Berechnung der Viterbi–Schranke gehen wir von der erweiterten Pfadgewichtsfunktion aus:
- $$T_{\rm enh}(X, U) = \frac{U X^5}{1- 2UX} \hspace{0.05cm}.$$
- Die Ableitung dieser Funktion nach dem Eingangsparameter $U$ lautet:
- $$\frac {\rm d}{{\rm d}U}\hspace{0.1cm}T_{\rm enh}(X, U) = \frac{(1- 2UX) \cdot X^5 - U X^5 \cdot (-2X)}{(1- 2UX)^2} = \frac{ X^5}{(1- 2UX)^2} \hspace{0.05cm}.$$
- Diese Gleichung liefert für $U = 1$ und $X = \beta$ die Viterbi–Schranke:
- $$\frac {\rm d}{{\rm d}U}\hspace{0.1cm}T_{\rm enh}(X, U) = \frac{(1- 2UX) \cdot X^5 - U X^5 \cdot (-2X)}{(1- 2UX)^2} = \frac{U X^5}{(1- 2UX)^2} \hspace{0.05cm}.$$
- $$\Rightarrow \hspace{0.3cm}\varepsilon = 10^{-2}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Viterbi)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.199^5 }{(1- 2\cdot 0.199)^2} = \hspace{0.2cm}\underline {\approx 8.61 \cdot 10^{-4}}\hspace{0.05cm},$$
- $$\hspace{0.85cm} \varepsilon = 10^{-4}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Viterbi)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.02^5 }{(1- 2\cdot 0.02)^2} = \hspace{0.2cm}\underline {\approx 3.47 \cdot 10^{-9}}\hspace{0.05cm}.$$
- Wir überprüfen das Ergebnis anhand der folgenden Näherung:
- $$T_{\rm enh}(X, U) = U X^5 + 2\hspace{0.05cm}U^2 X^6 + 4\hspace{0.05cm}U^3 X^7 + 8\hspace{0.05cm}U^4 X^8 + \text{...} $$
- $$\Rightarrow \hspace{0.3cm}\frac {\rm d}{{\rm d}U}\hspace{0.1cm}T_{\rm enh}(X, U) = X^5 + 4\hspace{0.05cm}U X^6 + 12\hspace{0.05cm}U^2 X^7 + 32\hspace{0.05cm}U^3 X^8 + \text{...} $$
- Setzt man $U = 1$ und $X = \beta$ so erhält man wieder die Viterbi–Schranke:
- $${\rm Pr(Viterbi)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \beta^5 + 4\hspace{0.05cm}\beta^6 + 12\hspace{0.05cm}\beta^7 + 32\hspace{0.05cm}\beta^8 +\text{...} = \beta^5 \cdot (1+ 4\hspace{0.05cm}\beta + 12\hspace{0.05cm}\beta^2 + 32\hspace{0.05cm}\beta^3 + ... )\hspace{0.05cm}. $$
- Für $\varepsilon = 10^{–2} \ \Rightarrow \ \beta = 0.199$ erhält man, wenn man die unendliche Summe nach dem $\beta^3$–Term abbricht:
- $${\rm Pr(Viterbi)} \approx 3.12 \cdot 10^{-4} \cdot (1 + 0.796 + 0.475 + 0.252) = 7.87 \cdot 10^{-4} \hspace{0.05cm}.$$
- Der Abbruchfehler – bezogen auf $8.61 \cdot 10^{–4}$ – beträgt hier ca. $8.6\%$. Für $\varepsilon = 10^{–4} \ \Rightarrow \ \beta = 0.02$ ist der Abbruchfehler noch geringer:
- $${\rm Pr(Viterbi)} \approx 3.20 \cdot 10^{-9} \cdot (1 + 0.086 + 0.0048 + 0.0003) = 3.47 \cdot 10^{-9} \hspace{0.05cm}.$$
(4) Für $\beta = 0.5$ ergeben sich für beide Schranken der Wert „unendlich”.
- Für noch größere $\beta$–Werte wird die Bhattacharyya–Schranke negativ und auch das Ergebnis für die Viterbi–Schranke ist dann nicht anwendbar. Daraus folgt:
- $$\beta_0 = 2 \cdot \sqrt{\varepsilon_0 \cdot (1- \varepsilon_0)} = 0.5$$
- $$\Rightarrow \hspace{0.3cm} {\varepsilon_0 \cdot (1- \varepsilon_0)} = 0.25^2 = 0.0625$$
- $$\Rightarrow \hspace{0.3cm} \varepsilon_0^2 - \varepsilon_0 + 0.0625 = 0$$
- $$\Rightarrow \hspace{0.3cm} \varepsilon_0 = 0.5 \cdot (1 - \sqrt{0.75}) \hspace{0.15cm} \underline {\approx 0.067}\hspace{0.05cm}.$$