Exercise 1.1: Dual Slope Loss Model

From LNTwww
Revision as of 22:38, 30 July 2020 by Oezdemir (talk | contribs)

Dual-slope path loss diagram

To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram.  This simple model is characterized by two linear sections separated by the so-called breakpoint  (BP). The variable name "V" stands for "Verlust", which is the German word for "loss":

  • For  ddBP  and the exponent   γ0  we have:
VS(d)=V0+γ010dBlg(d/d0).
  • For  d>dBP  we must apply the path loss exponent  γ1  where  γ1>γ0:
VS(d)=VBP+γ110dBlg(d/dBP).

In these equations, the variables are:

  • V0  is the path loss (in dB) at  d0  (normalization distance).
  • VBP  is the path loss (in dB) at  d=dBP  ("Breakpoint").


The graph applies to the model parameters

d0=1m,dBP=100m,V0=10dB,γ0=2,γ1=4VBP=50dB.

In the questions, this piece-wise defined profile is called  A.

The second curve is the profile  B  given by the following equation:

VS(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(1+d/dBP).

With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  d  according to the following equation:

PE(d)=PSGSGE/VtotVS(d),VS(d)=10VS(d)/10.

Here, all parameters are in natural units (not in dB).  The transmit power is assumed to be  PS=5 W .  The other quantities have the following meanings and values:

  • 10lg GS=17 dB  (gain of the transmit antenna),
  • 10lg GE=3  dB  (gain of receiving antenna – so actually a loss),
  • 10lg Vtot=4  dB  (loss through feeds).




Notes:

VS(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(d/dBP)
then profile  A  and profile  B  would be identical for  ddBP.
  • In this case, however, profile  B  would be above profile  A  for   d<dBP, suggesting clearly too good conditions.
  • For example,   d=d0=1  m  with the given numerical values gives a result that is   40  dB  too good:
VS(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(d/dBP)=10dB+210dBlg(1/100)=30dB.



Questions

1

How large is the path loss (in  dB)  after  d=100 m  according to profile  A?

VS(d=100 m) = 

 dB

2

How large is the path loss (in  dB)  after  d=100 m  according to profile  B?

VS(d=100 m) = 

 dB

3

What is the received power after  100  m  with both profiles?

Profile A:PE(d=100 m) = 

  mW
Profile B:PE(d=100 m) = 

  mW

4

How big is the deviation  ΔVS  between profile  A  and  B  at  d=50 m?

ΔVP(d=50 m) = 

 dB

5

How big is the deviation  ΔVS  between profile  A  and  B  at  d=200 m?

ΔVP(d=200 m) = 

 dB


Solutions

(1)  You can see directly from the graphic that the profile  (A)  with the two linear sections at the breakpoint  (d=100 m)  gives the following result:

VS(d=100m)=50dB_.


(2)  With the profile  (B)  on the other hand, using  V0=10 dBγ0=2  and  γ1=4:

VS(d=100m)=10dB+20dBlg(100)+20dBlg(2)56dB_.


(3)  The antenna gains from the transmitter  (+17 dB)  and receiver  (3 dB)  and the internal losses of the base station  (+4 dB)  can be combined to

10lgG=10lgGS+10lgGE10lgVtot=17dB3dB4dB=10dBG=10.
  • For the profile  (A)  the following path loss occurred:
VS(d=100m)=50dBKP=105.
This gives you for the received power after  d=100 m:
PE(d=100m)=PSGKP=510105=0.5mW_.
  • For profile  (B)  the received power is about  4  times smaller:
PE(d=100m)=5W10105.65W104105=0.125mW_.


(4)  Below the breakpoint  (d<100 m), the deviation is determined by the last summand of profile  (B):

ΔVS(d=50m)=(γ1γ0)10dBlg(1+d/dBP)=(42)10dBlg(1.5)3.5dB_.


(5)  Here the profile  (A)  with  VBP=50 dB  gives:

VS(d=200m)=50dB+410dBlg(2)62dB.
  • On the other hand, the profile  (B)  leads to the result:
VS(d=200m)=50dB+20dBlg(200)+20dBlg(3)=10dB+46dB+9.5dB65.5dB
ΔVP(d=200m)=65.5dB62dB3.5dB_.
  • You can see that  ΔVS  is almost symmetrical to  d=dBP  if you plot the distance  d  logarithmically as in the given graph.