Applets:Frequency & Impulse Responses
Contents
Applet Description
Dargestellt werden reelle und symmetrische Tiefpässe $H(f)$ und die dazugehörigen Impulsantworten $h(t)$, nämlich
- Gaussian lowpass,
- Rectangular lowpass,
- Triangular lowpass,
- Trapezoidal lowpass,
- Cosine-rolloff lowpass,
- Cosine-rolloff -squared lowpass.
Es ist zu beachten:
- Die Funktionen $H(f)$ bzw. $h(t)$ werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
- Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
- Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $H(f)$ und $h(t)$ sind jeweils normiert.
Theoretical background
Frequency Response $H(f)$ and Impulse Response $h(t)$
- Der Frequenzgang (oder auch die Übertragungsfunktion) $H(f)$ eines linearen zeitinvarianten Übertragungssystems gibt das Verhältnis zwischen dem Ausgangsspektrum $Y(f)$ und dem dem Eingangsspektrum $X(f)$ an:
- $$H(f) = \frac{Y(f)}{X(f)}.$$
- Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem Tiefpass (englisch: Low-pass).
- Die Eigenschaften von $H(f)$ werden im Zeitbereich durch die Impulsantwort $h(t)$ ausgedrückt. Entsprechend dem zweiten Fourierintegral gilt:
- $$h(t)={\rm IFT} [H(f)] = \int_{-\infty}^{+\infty}H(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
- Die Gegenrichtung wird durch das erste Fourierintegral beschrieben:
- $$H(f)={\rm FT} [h(t)] = \int_{-\infty}^{+\infty}h(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
- In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
- $$h(t)=\int_{-\infty}^{+\infty}H(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ H(f)=\int_{-\infty}^{+\infty}h(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
- Bei einem Vierpol $[$das bedeutet: $X(f)$ und $Y(f)$ haben gleiche Einheiten$]$ ist $Y(f)$ dimensionslos.
- Die Einheit der Impulsantwort ist $\rm 1/s$. Es gilt zwar $\rm 1/s = 1 \ Hz$, aber die Einheit „Hertz” ist in diesem Zusammenhang unüblich.
- Der Zusammenhang zwischen diesem Applet und dem ähnlich aufgebauten Applet Impulse und Spektren basiert auf dem Vertauschungssatz.
- Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \ \Rightarrow$ die Zahlenwerte von $h(t)$ müssen noch durch $T$ dividiert werden.
$\text{Beispiel:}$ Stellt man einen Rechteck–Tiefpass mit Höhe $K_1 = 1$ und äquivalenter Bandbreite $\Delta f_1 = 1$ ein,
- so ist der Frequenzgang $H_1(f)$ im Bereich $-1 < f < 1$ gleich $1$ und außerhalb dieses Bereichs gleich Null.
- Die Impulsantwort $h_1(t)$ verläuft $\rm si$–förmig mit $h_1(t= 0) = 1$ und der ersten Nullstelle bei $t=1$.
Mit dieser Einstellung soll nun ein Rechteck–Tiefpass mit $K = 1.5$ und $\Delta f = 2 \ \rm kHz$ nachgebildet werden, wobei die Normierungszeit $T= 1 \ \rm ms$ betrage.
- Dann liegt die erste Nullstelle bei $t=0.5\ \rm ms$ und das Impulsantwortmaximum ist dann $h(t= 0) = 3 \cdot 10^3 \ \rm 1/s$.
Gaussian Lowpass
- Der Gauß–Tiefpass lautet mit der Höhe $K$ und der (äquivalenten) Bandbreite $\Delta f$:
- $$H(f)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f/\Delta f)^2}.$$
- Die äquivalente Bandbreite $\Delta f$ ergibt sich aus dem flächengleichen Rechteck.
- Der Wert bei $f = \Delta f/2$ ist um den Faktor $0.456$ kleiner als der Wert bei $f=0$.
- Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
- $$h(t)=K\cdot \Delta f \cdot {\rm e}^{-\pi(t\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f)^2} .$$
- Je kleiner $\Delta f$ ist, um so breiter und niedriger ist die Impulsantwort ⇒ Reziprozitätsgesetz von Bandbreite und Impulsdauer.
- Sowohl $H(f)$ als auch $h(t)$ sind zu keinem $f$– bzw. $t$–Wert exakt gleich Null.
- Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden.
- Zum Beispiel ist $h(t)$ bereits bei $t=1.5 \cdot \Delta t$ auf weniger als $0.1\% $ des Maximums abgefallen.
Rectangular Lowpass
- Der Rechteck–Tiefpass lautet mit der Höhe $K$ und der (äquivalenten) Bandbreite $\Delta f$:
- $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
- Der $\pm \Delta f/2$–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
- Für die Impulsantwort $h(t)$ erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
- $$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
- Der $h(t)$–Wert bei $t=0$ ist gleich der Rechteckfläche des Frequenzgangs.
- Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen $1/\Delta f$.
- Das Integral über die Impulsantwort $h(t)$ ist gleich dem Frequenzgang $H(f)$ bei der Frequenz $f=0$, ist also gleich $K$.
Triangular Lowpass
- Der Dreieck–Tiefpass lautet mit der Höhe $K$ und der (äquivalenten) Bandbreite $\Delta f$:
- $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|f|}{\Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
- Die absolute physikalische Bandbreite $B$ ⇒ [nur positive Frequenzen] ist ebenfalls gleich $\Delta f$, ist also so groß wie beim Rechteck–Tiefpass.
- Für die Impulsantwort $h(t)$ erhält man gemäß der Fouriertransformation:
- $$h(t)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
- $H(f)$ kann man als Faltung zweier Rechteckfunktionen $($jeweils mit Breite $\Delta f)$ darstellen.
- Daraus folgt: $h(t)$ beinhaltet anstelle der ${\rm si}$-Funktion die ${\rm si}^2$-Funktion.
- $h(t)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
- Der asymptotische Abfall von $h(t)$ erfolgt hier mit $1/t^2$, während zum Vergleich beim Rechteck–Tiefpass $h(t)$ mit $1/t$ abfällt.
Trapezoidal Lowpass
Der Trapez–Tiefpass lautet mit der Höhe $K$ und den beiden Eckfrequenzen $f_1$ und $f_2$:
- $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{f_2-|f|}{f_2-f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
- Für die äquivalente Bandbreite (flächengleiches Rechteck) gilt: $\Delta f = f_1+f_2$.
- Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
- $$r=\frac{f_2-f_1}{f_2+f_1}.$$
- Der Sonderfall $r=0$ entspricht dem Rechteck–Tiefpass und der Sonderfall $r=1$ dem Dreieck–Tiefpass.
- Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
- $$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t)\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
- Der asymptotische Abfall von $h(t)$ liegt zwischen $1/t$ $($für Rechteck–Tiefpass oder $r=0)$ und $1/t^2$ $($für Dreieck–Tiefpass oder $r=1)$.
Cosine-rolloff Lowpass
Der Cosinus–Rolloff–Tiefpass lautet mit der Höhe $K$ und den beiden Eckfrequenzen $f_1$ und $f_2$:
- $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|f|-f_1}{f_2-f_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
- Für die äquivalente Bandbreite (flächengleiches Rechteck) gilt: $\Delta f = f_1+f_2$.
- Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
- $$r=\frac{f_2-f_1}{f_2+f_1}.$$
- Der Sonderfall $r=0$ entspricht dem Rechteck–Tiefpass und der Sonderfall $r=1$ dem Cosinus-Quadrat-Tiefpass.
- Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
- $$h(t)=K\cdot \Delta f \cdot \frac{\cos(\pi \cdot r\cdot \Delta f \cdot t)}{1-(2\cdot r\cdot \Delta f \cdot t)^2} \cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
- Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $h(t)$ asymptotisch mit $t$ ab.
Cosine-rolloff-squared Lowpass
- Dies ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses und ergibt sich aus diesem für $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}f_1=0,\ f_2= \Delta f$:
- $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|f|\hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
- Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
- $$h(t)=K\cdot \Delta f \cdot {\pi}/{4}\cdot \big [{\rm si}(\pi(\Delta f\cdot t +0.5))+{\rm si}(\pi(\Delta f\cdot t -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
- Wegen der letzten ${\rm si}$-Funktion ist $h(t)=0$ für alle Vielfachen von $T=1/\Delta f$ ⇒ Die äquidistanten Nulldurchgänge des Cosinus–Rolloff–Tiefpasses bleiben erhalten.
- Aufgrund des Klammerausdrucks weist $h(t)$ nun weitere Nulldurchgänge bei $t=\pm1.5 T$, $\pm2.5 T$, $\pm3.5 T$, ... auf.
- Für $t=\pm T/2$ hat die Impulsanwort den Wert $K\cdot \Delta f/2$.
- Der asymptotische Abfall von $h(t)$ verläuft in diesem Sonderfall mit $1/t^3$.
Exercises
- First select the number (1, ... , 6) of the exercise.
- A description of the exercise will be displayed. The parameter values are adjusted.
- Solution after pressing "Show solution".
- The number 0 corresponds to a „Reset”: Same setting as at the program start.
- „Red” corresponds to the first parameter set ⇒ $H_1(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$
- „Blue” corresponds to the second parameter set ⇒ $H_2(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.
- Values smaller than $0.0005$ are set to zero in the program.
(1) Compare the red Gaussian lowpass $(K_1 = 1, \Delta f_1 = 1)$ to the blue rectangular lowpass $(K_2 = 1, \Delta f_2 = 1)$. Questions:
(a) Which output signals $y(t)$ result from the signal $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$ with $f_0 = 0.5$?
(b) What are the differences between the two lowpass filters with $f_0 = 0.5 \pm f_\varepsilon$ and $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?
- (a) It holds $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$ with $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 0.912, \ A_2 = 1,000$. The phase $\varphi_0$ remains unchanged.
- (b) For red $ A_1 = 0.912$ is still valid. For blue it holds $A_2 = 0$ for $f_0 = 0.5000\text{...}001$ and $A_2 = 2$ for $f_0 = 0.4999\text{...}999$.
(2) Leave the settings unchanged. Which lowpass $H(f)$ fulfills the first or the second Nyquist criterion?
Here $H(f)$ denotes the total frequency response of transmitter,
channel and reception filter.
- First Nyquist criterion: The impulse response $h(t)$ must have equidistant zero crossings at the (normalized) times $t = 1,\ 2$, ...
- The impulse response $h(t) = {\rm si}(\pi \cdot \delta f \cdot t)$ of the rectangular lowpass filter fulfils this criterion with $\Delta f = 1$.
- In contrast, the first Nyquist criterion is never fulfilled for the Gaussian lowpass and there is always impulse interference.
- The second Nyquist criterion is met by neither the rectangular lowpass nor the Gaussian lowpass.
(3) Compare the red rectangular lowpass $(K_1 = 0.5, \Delta f_1 = 2)$ to the blue rectangular lowpass $(K_2 = 1, \Delta f_2 = 1)$. Then vary $\Delta f_1$ between $2$ and $0.5$.
- With $\Delta f_1 = 2$ the zeros of $h_1(t)$ are multiples of $0.5$ ⇒ $h_1(t)$ will decay twice as fast as $h_2(t)$.
- With the present setting, $h_1(t = 0) = h_2(t = 0)$ holds, since the rectangular areas of $H_1(f)$ and $H_2(f)$ are equal.
- By decreasing $\Delta f_1$, the impulse response $h_1(t)$ becomes wider and lower. With $\Delta f_1 = 0.5$, $h_1(t)$ is twice as wide as $h_2(t)$, but simultaneously by a factor $4$ lower.
(4) Compare the red trapezoidal lowpass $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$ with the blue rectangular lowpass $(K_2 = 1, \ \Delta f_2 = 1)$. Vary $r_1$ between $0$ and $1$.
- With $r_1 = 0.5$ the followers/precursors of $h_1(t)$ for the "trapezoid" are less than for the "rectangle" due to the flatter edge drop .
- With smaller $r_1$ followers & precursors increase. With $r_1= 0$ the trapezoidal is equal to the rectangular lowpass ⇒ $h(t)= {\rm si}(\pi \cdot t/T)$.
- With larger $r_1$ followers & precursors become smaller. With $r_1= 1$ the trapezoidal is equal to the triangular lowpass ⇒ $h(t)= {\rm si}^2(\pi \cdot t/T)$.
(5) Compare the trapezoidal lowpass $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$ to the
cosine-rolloff lowpass $(K_2 = 1, \ \Delta f_2 = 1, \ r_2 = 0.5)$.
Vary $r_2$ between $0$ and $1$. Interpret the impulse response for $r_2 = 0.75$. Which lowpass satisfies the first Nyquist criterion?
- With $r_1 = r_2= 0.5$ the edge drop of $H_2(f)$ is steeper by the frequency $f = 0.5$ than the edge drop of $H_1(f)$.
- With the same rolloff $r= 0.5$ the impulse response $h_2(t)$ for $t > 1$ has larger amounts than $h_1(t)$.
- With $r_1 = 0.5$ and $r_2 = 0.75$ $H_1(f) \approx H_2(f)$ holds and therefore also $h_1(t)
\approx h_2(t)$.
- $H_1(f)$ and $H_2(f)$ both fulfill the first Nyquist criterion: Both functions are point-symmetrical around the „Nyquist point”.
- Because of $\Delta f = 1$ both $h_1(t)$ and $h_2(t)$ have zero crossings at $\pm 1$, $\pm 2$ ⇒ in each case maximum vertical eye opening.
(6) Compare the cosine-square lowpass $(K_1 = 1, \ \ \Delta f_1 = 1)$ with the cosine-rolloff lowpass $(K_2 = 1, \ \ \Delta f_2 = 1,\ r_2 = 0.5)$.
Vary $r_2$ between $0$ and $1$. Interpret the results. Which low pass satisfies the second Nyquist criterion?
- $H_1(f)$ is a special case of the cosine-rolloff lowpass with rolloff $r_2 =1$. The first Nyquist criterion is also fulfilled with $r_2 \ne 1$.
- According to the second Nyquist criterion $h(t)$ must also have zeros at $t=\pm 1.5$, $\pm 2.5$, $\pm 3.5$, ... $($ but not, however, at $t = \pm 0.5)$.
- For the cosine-square lowpass, $h_1(t=\pm 0.5) = 0.5$ and it therefore holds $h_1(t=\pm 1) = h_1(t=\pm 1.5) = h_1(t=\pm 2)= h_1(t=\pm 2.5) = \text{...} =0$.
- Only the cosine-square lowpass fulfils the first and second Nyquist criteria simultaneously: Maximum vertical and horizontal eye opening.
Applet Manual
left (A) Bereich der graphischen Darstellung für $H(f)$
(B) Bereich der graphischen Darstellung für $h(t)$
(C) Variationsmöglichkeit für die graphischen Darstellungen
(D) Parametereingabe per Slider
links (rot): „Low–pass 1”, rechts (blau): „Low–pass 2”
(E) Parameter entsprechend der Voreinstellung ⇒ „Reset”
(F) Einstellung von $t_*$ und $f_*$ für Numerikausgabe
(G) Numerikausgabe von $H(f_*)$ und $h(t_*)$
links (rot): „Low–pass 1”, rechts (blau): „Low–pass 2”
Details zum obigen Punkt (C)
(*) Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern)
und $\rm o$ (Zurücksetzen)
(*) Verschiebe–Funktionen „$\leftarrow$” (Bildausschnitt nach links,
Ordinate nach rechts) sowie „$\uparrow$” „$\downarrow$” „$\rightarrow$”
Andere Möglichkeiten:
- Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
- Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.
About the authors
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
- 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.