Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.3: Cosine and Sine Components

From LNTwww

Spektrum von Cosinus- und Sinusanteilen

Given is the amplitude spectrum  X(f)  of a signal  x(t)  according to the graph.

  • Let  f1=4kHz be the normalisation frequency.
  • Thus the actual frequencies of the signal components are  0kHz4kHz  and  10kHz.


This signal  x(t)  is at the input of a linear differentiator whose output can be represented with  ω1=2πf1  as follows:

y(t)=1ω1dx(t)dt.




Hint:




Questions

1

Give  x(t)  analytically.  What is the signal value at  t=0?

x(t=0) = 

  V

2

What is the period duration of the signal  x(t)?

T0 = 

  ms

3

Calculate the output signal  y(t)  of the differentiator  What is the signal value at time  t=0?

y(t=0) = 

  V

4

Which of the following statements are true regarding the signal  y(t)  or its spectrum  Y(f) ?

y(t)  has the same period duration as the signal  x(t).
Y(f)  contains a Dirac function at the frequency  f=0.
Y(f)  contains a Dirac function at  +f1  with weight  j·1V.
Y(f)  contains a Dirac function at  –\hspace{-0.1cm}2.5 \cdot f_1  with weight  5\,{\rm V}.


Solution

Summensignal aus Cosinus- und Sinusanteilen

(1)  The time signal has the following form:

x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).
  • Here  \omega_1 = 2\pi f_1  denotes the angular frequency of the cosine component.
  • At time  t = 0  the signal has the value  x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}.


(2)  The base frequency  f_0  is the least common divisor

  • of f_1 = 4{\,\rm kHz}
  • and 2.5 · f_1 = 10{\,\rm kHz}.


From this follows  f_0 = 2{\,\rm kHz}   ⇒   period duration T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}.

Spektrum mit diskreten Anteilen

(3)  The following applies to the output signal y(t) of the differentiatior:

y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).
  • This leads to the solution:
y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).
  • For  t = 0  the value  y(t=0)\hspace{0.15cm}\underline{=10\,\rm V} follows.
  • The spectrum  Y(f)  is shown on the right.


(4)  The solutions 1 and 4 are correct:

  • The period duration T_0 is not changed by the amplitude and phase of the two components.
  • This means, that  T_0 = 0.5 {\,\rm ms}  still applies.
  • The DC component disappears due to the differentiation.
  • The component  f_1  is sinusoidal. Thus  X(f)  has an (imaginary) Dirac at  f = f_1, but with a negative sign.
  • The cosine component with amplitude  {10\,\rm V}  results in the two Dirac functions at  \pm 2.5 \cdot f_1 , each with weight  {5\,\rm V} .