Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.4Z: Pointer Diagram for SSB-AM

From LNTwww
Revision as of 15:58, 10 February 2021 by Noah (talk | contribs)

Vorgegebenes Spektrum  S+(f)

The analytical signal  s+(t)  with the line spectrum

S+(f)=1Vδ(ff50)j1Vδ(ff60)

is to be considered. Here  f50  and  f60  are abbreviations for the frequencies  50 kHz  and  60 kHz, respectively..

This analytical signal could occur, for example, with the  single sideband amplitude modulation  (SSB-AM) of a sinusoidal message signal  (Frequenz  fN=10 kHz)  with a cosinusoidal carrier signal  (fT=50 kHz) , whereby only the upper sideband is transmitted (USB-Modulation).

However, the analytical signal could also result from a  LSB-Modulation  modulation of the same sinusoidal signal if a sinusoidal carrier signal with carrier frequency  fT=60 kHz  is used.





Hints:


Questions

1

Give the analytical signal  s+(t)  as a formula. What value results at the starting time  t=0?

Re[s+(t=0)] = 

 V
Im[s+(t=0)] = 

 V

2

At what time  t1  does the first zero crossing of the physical signal  s(t)  occur relative to the first zero crossing of the  50 kHz-cosine signal ?
Note:   The latter is at time  T_0/4 = 1/(4 \cdot f_{50}) = 5 \ µ \text{s}.

It is  t_1 < 5 \ {\rm µ} \text{s}.
It is  t_1 = 5 \ {\rm µ}\text{s}.
It is  t_1 > 5 \ {\rm µ} \text{s}.

3

What is the maximum value of  |s_+(t)| ? At what time  t_2  is this maximum value reached for the first time?

|s_+(t)|_{\rm max}\ = \

 \text{V}
t_2\ = \

 {\rm µ s}

4

At what time  t_3  is the pointer length  |s_+(t)|  equal to zero for the first time?

t_3\ = \

 {\rm µ s}


Solution

Three different analytical signals

(1)  The analytical signal is generally:

s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } - {\rm j}\cdot{\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }.

At time  t = 0  the complex exponential functions each take the value  1  and one obtains (see left graph):

  • \text{Re}[s_+(t = 0)] \; \underline{= +1\ \text{V}},
  • \text{Im}[s_+(t = 0)]\; \underline{ = \,-\hspace{-0.08cm}1\ \text{V}}.


(2)  For the analytical signal it can also be written:

s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 50}\hspace{0.05cm} t }) + {\rm j} \cdot{\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 50}\hspace{0.05cm} t }) - {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 60}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 60}\hspace{0.05cm} t }).

The real part of this describes the actual, physical signal:

s(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 50}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 60}\hspace{0.05cm} t }).

Correct is the proposed solution 3:

  • Considering the  50 \ \text{kHz-Cosinussignals}  cosine signal alone, the first zero crossing would occur at  t_1 = T_0/4  , i.e. after  5 \ {\rm µ s}, where  T_0 = 1/f_{50} = 20 \ {\rm µ s}  denotes the period duration of this signal.
  • The sinusoidal signal with the frequency  60 \ \text{kHz}  is positive during the entire first half-wave  (0 \, \text{...} \, 8.33\ {\rm µ s}) .
  • Due to the plus sign, the first zero crossing of  s(t) \ \Rightarrow \ t_1 > 5\ {\rm µ s} is delayed.
  • The middle graph shows the analytical signal at time  t = T_0/4, when the red carrier would have its zero crossing.
  • The zero crossing of the violet cumulative pointer only occurs when it points in the direction of the imaginary axis. Then  s(t_1) = \text{Re}[s_+(t_1)] = 0.


(3)  The maximum value of  |s_+(t)|  is reached when both pointers point in the same direction. The amount of the sum pointer is then equal to the sum of the two individual pointers; i.e.  \underline {2\ \text{ V}}.

This case is reached for the first time when the faster pointer with angular velocity  \omega_{60}  has caught up its "lag" of  90^{\circ} \; (\pi /2)  with the slower pointer  (\omega_{50}) :

\omega_{\rm 60} \cdot t_2 - \omega_{\rm 50}\cdot t_2 = \frac{\pi}{2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm}t_2 = \frac{\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} = \frac{1}{4 \cdot(f_{\rm 60}- f_{\rm 50})}\hspace{0.15 cm}\underline{= {\rm 25 \hspace{0.05cm} {\rm µ s}}}.
  • At this point, the two pointers have made  5/4  bzw.  6/4  revolutions respectively and both point in the direction of the imaginary axis (see right graph).
  • The actual, physical signal  s(t) – i.e. the real part of  s_+(t) – is therefore zero at this moment.


(4)  The condition for  |s_+(t_3)| = 0  is that there is a phase offset of  180^\circ  between the two equally long pointers so that they cancel each other out.

  • This further means that the faster pointer has rotated  3\pi /2  further than the  50 \ \text{kHz-component}.
  • Analogous to the sample solution of sub-task  (3) , the following therefore applies:
t_3 = \frac{3\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} \hspace{0.15 cm}\underline{= {\rm 75 \hspace{0.05cm} {\rm µ s}}}.