Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.6Z: Complex Exponential Function

From LNTwww
Revision as of 16:18, 27 April 2021 by Guenter (talk | contribs)

Splitting the complex exponential function in the spectral domain

In connection with  "bandpass systems" , one-sided spectra are often used.  In the graphic you see such a one-sided spectral function  X(f), which results in a complex time signal  x(t).

In the sketch below,  X(f)  is split into an even component  G(f)  – with respect to the frequency – and an odd component  U(f).





Hints:


Questions

1

What is the time function  g(t)  that fits  G(f)?  How large is   g(t = 1 \, µ \text {s})?

\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \

 \text{V}
\text{Im}\big[g(t = 1 \, µ \text {s})\big]\ = \

 \text{V}

2

What is the time function  u(t)  that fits  U(f)?  What is the value of  u(t = 1 \, µ \text {s})?

\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \

 \text{V}
\text{Im}\big[u(t = 1 \, µ \text {s})\big]\ = \

 \text{V}

3

Which of the statements are true regarding the signal  x(t) ?

The signal is  x(t) = A \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi\hspace{0.05cm}\cdot \hspace{0.05cm} f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t}.
In the complex plane  x(t)  rotates clockwise.
In the complex plane  x(t)  rotates counterclockwise.
One microsecond is needed for one rotation.


Solution

(1)  G(f)  is the spectral function of a cosine signal with period  T_0 = 1/f_0 = 8 \, µ\text {s}:

g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).

At  t = 1 \, µ\text {s}  the signal value is equal to  A \cdot \cos(\pi /4):

  • The real part is  \text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}},
  • The imaginary part is  \text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}


(2)  Starting from the Fourier correspondence

A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A

is obtained by applying the shifting theorem twice (in the frequency domain):

U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).
u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).
  • The real part of this signal is always zero.
  • At  t = 1 \, µ\text {s}  the following applies to the imaginary part:  \text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}.


(3)  Because  X(f) = G(f) + U(f)  also holds:

x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).

This result can be summarised by  Euler's theorem  as follows:

x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .

The given alternatives 1 and 3 are correct:

  • The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise.
  • For one rotation, the "pointer" needs the period  T_0 = 1/f_0 = 8 \, µ\text {s}.