Exercise 3.09: Correlation Receiver for Unipolar Signaling
Betrachtet wird die gemeinsame Entscheidung von $N = 3$ Binärsymbolen (Bit) mittels des Korrelationsempfängers. Die $M = 8$ möglichen Quellensymbolfolgen $Q_i$ besitzen alle die gleiche Wahrscheinlichkeit und sie sind durch die folgenden unipolaren Amplitudenkoeffizienten festgelegt:
- $$Q_0 = 000, \hspace{0.15cm}Q_1 = 001,\hspace{0.15cm}Q_2 = 010,\hspace{0.15cm}Q_3 = 011 \hspace{0.05cm},\hspace{0.15cm} Q_4 = 100, \hspace{0.15cm}Q_5 = 101,\hspace{0.15cm}Q_6 = 110,\hspace{0.15cm}Q_7 = 111 \hspace{0.05cm}.$$
Weiter gilt:
- Die möglichen Sendesignale $s_i(t)$ – jeweils mit der Dauer $3T$ – sind alle rechteckförmig mit Ausnahme von $s_0(t) \equiv 0$.
- Die Signale $s_1(t)$, $s_2(t)$ und $s_4(t)$ mit nur jeweils einer "$1$” besitzen die Signalenergie $E_{\rm B}$ (steht für "Energie pro Bit”), während zum Beispiel die Energie von $s_7(t)$ gleich $3E_{\rm B}$ ist.
Der Korrelationsempfänger bildet aus dem verrauschten Empfangssignal $r(t) = s(t) + n(t)$ insgesamt $2^3 = 8$ Entscheidungsgrößen (Metriken)
- $$W_i = I_i - {E_i}/{2 }\hspace{0.3cm}{\rm mit}\hspace{0.3cm} I_i =\int_{0}^{3T} r(t) \cdot s_i(t) \,{\rm d} t \hspace{0.3cm}( i = 0,\text{...} , 7)$$
und setzt die Sinkensymbolfolge $V = Q_j$, falls $W_j$ größer ist als alle anderen $W_{i \ne j}$. Damit trifft er eine optimale Entscheidung im Sinne von Maximum–Likelihood.
In der Tabelle sind die (unkorrigierten) Korrelationswerte $I_0, \ \text{...} \ , I_7$ für drei verschiedene Systeme angegeben, die sich hinsichtlich der Störungen $n(t)$ unterscheiden und mit $\rm A$, $\rm B$ oder $\rm C$ bezeichnet werden.
- Eine dieser Spalten steht für "keine Störung”,
- eine für "geringe Störungen” und
- eine weitere für "starke Störungen”.
Zur Bestimmung der Metriken für die drei Systemvarianten wurde stets die gleiche Quellensymbolfolge gesendet.
Hinweis:
- Die Aufgabe gehört zum Kapitel Optimale Empfängerstrategien.
Fragebogen
Musterlösung
- Beim System $\rm B$ treten viermal die Metriken $0$ und viermal die Metriken $1$ auf.
- Dies weist auf $n(t) = 0$ hin, da sich sonst – wie bei den Systemen $\rm A$ und $\rm C$ – alle $I_i$ unterscheiden müssten.
(2) Beim System $\rm B$ ergeben sich folgende Entscheidungswerte $W_i = I_i \ – E_i/2$, jeweils normiert auf $E_{\rm B}$:
- $$W_0 = 0 - 0 = 0, \hspace{0.2cm}W_1 = 0 - 0.5 = -0.5 \hspace{0.05cm},$$
- $$W_2 = 1 - 0.5 = 0.5, \hspace{0.2cm}W_3 = 1 - 1 = 0 \hspace{0.05cm},$$
- $$W_4 = 0 - 0.5 = -0.5, \hspace{0.2cm}W_5 = 0 - 1 = -1 \hspace{0.05cm}.$$
- $$W_6 = 1 - 1 = 0, \hspace{0.2cm}W_7 = 1 - 1.5 = -0.5 \hspace{0.05cm}.$$
- Der maximale Wert $W_2 = 0.5$ ⇒ $i = 2$.
- Der Korrelationsempfänger entscheidet sich also für $V = Q_2$.
- Da keine Störungen auftreten, wurde tatsächtlich auch $Q_2 =$ "$\rm 010$” gesendet ⇒ $\underline { k= 2}$.
(3) Für die Entscheidungswerte von System $\rm A$ gilt:
- $$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -0.07 - 0.50 = -0.57, $$
- $$W_2 = 1.13 - 0.50 = 0.63, \hspace{0.2cm}W_3 = 1.06 - 1.00 = 0.06 \hspace{0.05cm},$$
- $$W_4 = 0.05 - 0.50 = -0.45, \hspace{0.2cm}W_5 = -0.02 - 1.00 = -1.02\hspace{0.05cm},$$
- $$W_6 = 1.18 - 1.00 = 0.18, \hspace{0.2cm}W_7 = 1.11 - 1.50 = -0.39 \hspace{0.05cm}.$$
- Das Maximum ist $W_j = W_2$ ⇒ $\underline { j= 2}$.
- Das heißt, dass der Korrelationsempfänger auch bei System $\rm A$ die richtige Entscheidung $V = Q_2$ trifft.
- Ohne den Korrekturterm $(– E_i/2)$ hätte der Empfänger allerdings die falsche Entscheidung $V = Q_6$ getroffen.
(4) Der Korrelationsempfänger $\rm C$ hat folgende Werte zu vergleichen:
- $$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -1.31 - 0.50 = -1.81 \hspace{0.05cm},$$
- $$W_2 = 3.59 - 0.50 = 3.09, \hspace{0.2cm}W_3 = 2.28 - 1.00 = 1.28 \hspace{0.05cm},$$
- $$W_4 = 0.97 - 0.50 = 0.47, \hspace{0.2cm}W_5 = -0.34 - 1.00 = -1.34 \hspace{0.05cm},$$
- $$W_6 = 4.56 - 1.00 = 3.56, \hspace{0.2cm}W_7 = 3.25 - 1.50 = 1.75 \hspace{0.05cm}.$$
Die Maximierung ergibt hier $\underline {j = 6}$ ⇒ $V = Q_6$.
- Da aber $Q_2$ gesendet wurde, entscheidet hier der Korrelationsempfänger falsch.
- Die Störungen sind zu stark.
(5) Richtig ist der Lösungsvorschlag 3:
- Die Störungen sind bei System $\rm C$ am größten und für die aktuellen Empfangswerte sogar so groß, dass der Korrelationsempfänger eine Fehlentscheidung trifft.
(6) Richtig sind die Aussagen 1 und 3:
- Im fehlerfreien Fall (System $\rm B$) ist die Differenz zwischen $W_2 = 0.5$ und den nächstgrößten Werten $W_0 = W_3 = W_6 = 0$ jeweils gleich $D_{\hspace{0.02cm}\rm min} =0.5$.
- Bei System $\rm A$ (leichte Störungen) ist die Differenz zwischen $W_2 = 0.63$ und dem nächstgrößeren Wert $W_6 = 0.18$ immerhin noch $D_{\hspace{0.02cm}\rm min} = 0.45$.
- Erhöht man die Rauschleistung um den Faktor $50$, so entscheidet der Korrelationsempfänger immer noch richtig, doch ist dann die minimale Differenz $D_{\hspace{0.02cm}\rm min} = 0.16$ deutlich kleiner.
- Für das System $\rm C$, bei dem der Korrelationsempfänger überfordert ist ⇒ Teilaufgabe (4), wurde eine gegenüber dem System $\rm A$ um den Faktor 400 größere Rauschleistung zugrundegelegt.
- Entscheidet der Korrelationsempfänger die gesendete Folge $Q_2$ falsch, so ist eine Verfälschung zu den Folgen $Q_0$, $Q_3$ bzw. $Q_6$ am wahrscheinlichsten, da sich alle diese drei Folgen von $Q_2$ nur jeweils in einem Bit unterscheiden.
- Dass bei der beschriebenen Simulation $W_6$ stets größer ist als $W_0$ bzw. $W_3$, ist "Zufall” und sollte nicht überinterpretiert werden.