Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 5.7: McCullough and Gilbert-Elliott Parameters

From LNTwww
Revision as of 16:33, 28 May 2021 by Javier (talk | contribs) (Text replacement - "”" to """)

Gilbert-Elliott– und McCullough–Modell

In  Aufgabe 5.6  und  Aufgabe 5.6Z  wurden jeweils das GE–Modell mit den Parameterwerten

pG = 0.001,pB=0.1,Pr(G|B) = 0.1,Pr(B|G)=0.01.

genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird  p(B|G)  anstelle von  Pr(B|G)  geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen.

Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit  q  anstelle von  p  bezeichnet.

Beispielsweise bezeichnet beim MC–Modell  q(B|G)  die Übergangswahrscheinlichkeit von Zustand  G  in den Zustand  B  unter der Voraussetzung, dass im Zustand  G  gerade ein Fehler aufgetreten ist. Der GE–Parameter  p(B|G)  kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.


Die Parameter des GE–Modells   ⇒   pG,pB,p(B|G),p(G|B)   können so in die entsprechenden MC–Parameter  qG,qB,q(B|G)  und  q(G|B)  umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge.

Die Umrechnungsgleichungen lauten:

qG = 1βG,qB=1βB,q(B|G) = αB[Pr(B|G)+Pr(G|B)]αGqB+αBqG,q(G|B) = αGαBq(B|G).

Hierbei sind die folgenden Hilfsgrößen verwendet:

uGG = Pr(G|G)(1pG),uGB=Pr(B|G)(1pG),
uBB = Pr(B|B)(1pB),uBG=Pr(G|B)(1pB)
βG = uGG+uBB+(uGGuBB)2+4uGBuBG2,
βB = uGG+uBB(uGGuBB)2+4uGBuBG2,
xG=uBGβGuBB,xB=uBGβBuBB
αG=(wGpG+wBpBxG)(xB1)pM(xBxG),αB=1αG.

wG  und  wB  sind die Zustandswahrscheinlichkeiten für „GOOD" und „BAD" des GE–Modells. In der  Aufgabe 5.6Z  wurden diese wie folgt berechnet:

wG=10/11,wB=1/11.

Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind  αG  und  αB.




Hinweise:

  • Die Aufgabe gehört zum Kapitel  Bündelfehlerkanäle.
  • In der nachfolgenden  Aufgabe 5.7Z  werden die wichtigsten Beschreibungsgrößen direkt aus den MC–Parametern berechnet:
    • Fehlerkorrelationsfunktion,
    • Korrelationsdauer,
    • mittlere Fehlerwahrscheinlichkeit und
    • Fehlerabstandsverteilung



Fragebogen

1

Berechnen Sie die folgenden Hilfsgrößen:

uGG= 

uBG = 

uGB = 

uBB = 

βG= 

βB= 

2

Wie lauten die beiden Fehlerwahrscheinlichkeiten des MC–Modells?

qG= 

qB = 

3

Berechnen Sie die weiteren Hilfsgrößen:

xG = 

xB = 

αG= 

αB = 

4

Berechnen Sie die Übergangswahrscheinlichkeiten des MC–Modells:

q(B|G) = 

q(G|B) = 


Musterlösung

(1)  Für die u–Hilfsgrößen gilt:

uGG = Pr(G|G)(1pG)=0.99(10.001)0.98901_,
uBG = Pr(G|B)(1pB)=0.1(10.1)0.09_,
uGB = Pr(B|G)(1pG)=0.01(10.001)0.00999_,
uBB = Pr(B|B)(1pB)=0.9(10.1)0.81_.
  • Daraus folgt für die β–Hilfsgrößen:
βG=uGG+uBB+(uGGuBB)2+4uGBuBG2=0.98901+0.81+(0.989010.81)2+40.009990.092
βG=1.79901+0.03204+0.0035962=1.79901+0.188772=0.9939_,
βB = uGG+uBB(uGGuBB)2+4uGBuBG2,= ...=1.799010.188772=0.8051_.


(2)  Mit dem Ergebnis der Teilaufgabe (1) erhält man:

qG=1βG=10.9939=0.0061_,qB=1βB=10.8051=0.1949_.


(3)  Entsprechend dem Angabenblatt ist hier anzusetzen

xG = uBGβGuBB=0.09990.99390.81=0.5432_,
xB = uBGβBuBB=0.09990.80510.81=20.388_,
αG = (wGpG+wBpBxG)(xB1)pM(xBxG)=(0.90910.001+0.09090.10.5432)(20.3881)0.01(20.3880.5432)=0.5975_,
αB = 1αG=0.4025_.


(4)  Entsprechend den vorgegebenen Gleichungen gilt:

q(B|G) = αB[Pr(B|G)+Pr(G|B)]αGqB+αBqG=0.4025[0.1+0.01]0.59750.1949+0.40250.0061=0.3724_,
q(G|B) = αGαBq(B|G)=0.59750.40250.3724=0.5528_.