Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.12: Run–Length Coding and Run–Length Limited Coding

From LNTwww
Revision as of 13:47, 22 September 2021 by Javier (talk | contribs) (Text replacement - "analyse" to "analyze")

Table on Run-Length Coding

We consider a binary source with the symbol set  A  and  B, where  B  however, occurs only very rarely.

  • Without source coding, exactly one bit would be needed per source symbol, and accordingly, for a source symbol sequence of length  N , the encoded sequence would also have length   Nbits=N.
  • Entropy coding makes little sense here without further measures  (example:  combining several symbols into a tuple)  because of the unfavourable symbol probabilities.
  • The remedy is  Run-Length Coding  (RLC), which is described in the theory section under the link mentioned.  For example, for the symbol sequence   ABAABAAAABBAAB...   the corresponding output of  "Run–Length Coding":   2; 3; 5; 1; 3;...
  • Of course, the lengths  L1=2L2=3, ...  of the individual substrings, each separated by  B , must be represented in binary before transmission.  If one uses  D=3  (bit) for all  Li  one obtains the RLC binary symbol sequence
010'011'101'001'011'...

The graph shows the RLC result to be analyzed.  Columns 2 and 3 show the substring lengths  Li  in binary and decimal, respectively, and column 4 shows them in cumulative form  (values from column 3 added up).

  • One problem of  "Run-Length Coding"  (RLC) is the unlimited range of values of the quantities  Li.  With  D=3,  no value  Li>7  can be represented and with  D=2,  the restriction is  1Li3.
  • The problem is circumvented with  "Run–Length Limited Coding"  (RLLC).  If a value is  Li2D,  one replaces  Li  with a special character  S  and the difference  Li2D+1.  With the RLLC decoder, this special character  S  is expanded again.





Hints:


RLLC Example:  We again assume the above sequence and the parameter  D=2 :

  • Source symbol sequence:    ABAABAAAABBAAB...
  • RLC decimal sequence:          2; 3; 5; 1; 3; ...
  • RLLC decimal sequence:       2;  3;  S; 2;  1;  3; ...
  • RLLC binary sequence:          10′11′ 00′10′01′11′...


You can see:

  • The special character  S  is binary-coded here as  00 .  This is only an example – it does not have to be like this.
  • Since with  D=2  for all real RLC values  1Li3 , the decoder recognizes the special character  00.
  • It replaces this again with  2D1  (three in the example)  A–symbols.


Questions

1

How many bits would be needed  without source coding , i.e. with the assignment  A   →  0  and  B   →  1?

Nbits = 

2

What is the relative frequency of symbol  B?

hB = 

 %

3

How many bits are needed for  Run–Length Coding  (RLC)  according to the given table with eight bits per codeword  (D=8)?

Nbits = 

4

Is  Run–Length Coding  with seven bit codewords  (D=7)  possible here?

Yes.
No.

5

How many bits are needed for  Run–Length Limited Coding  (RLLC)  with seven bits per codeword  (D=7)?

Nbits = 

6

How many bits are needed for  Run–Length Limited Coding  (RLLC)  with six bits per codeword  (D=6)?

Nbits = 


Solution

(1)  The binary sequence consists of  N=1250  binary symbols  (can be read from the last column in the table). 

  • This means that the same number of bits is needed without coding:
Nbits=1250_.


(2)  The entire symbol sequence of length  N=1250  contains  NB=25  symbols  B  and thus  NA=1225  symbols  A

  • The number  NB  of symbols  B  is equal to the number of rows in the table given at the front.
  • Thus the following applies to the relative frequency of symbol  B:
hB=NBN=251250=0.02_=2%.


(3)  We now consider  "Run–Length Coding"  (RLC), where each distance between two  B–symbols is represented by eight bits  (D=8).

  • Thus, with  NB=25, we get:
Nbits=NB8=200_.


(4)  RLC  with  D=7 only allows values between  1  und  271=127 for  Li.

  • However, the entry  "226"  in line 19 is greater     ⇒     NO.


(5)  Even with Run–Length Limited Coding  (RLLC),  only values up to  127  are permitted for the  "real"  distances  Li  with  D=7.

  • The entry  "226"  in line 19 is replaced by the following for  RLLC:
  • Line 19a:   S = 0000000   ⇒   special character, stands for "+127",
  • Line 19b:   1100011   ⇒   decimal 99.
  • This gives a total of 26 words of seven bits each:
Nbits=267=182_.


(6)  With  D=6  the following changes have to be made in  RLLC  compared to  RLC  (see table):

  • Line   1:   122=1·63+59   (one word more),
  • Line   6:     70=1·63+7     (one word more),
  • Line   7:     80=1·63+17   (one word more),
  • Line 12:     79=1·63+16   (one word more),
  • Line 13:     93=1·63+30   (one word more),
  • Line 19:   226=3·63+37   (one word more),
  • Line 25:     97=1·63+34   (one word more).


This gives a total of  25+9=34  words of six bits each:

Nbits=346=204_,

i.e. a worse result than with seven bits according to subtask (5).