Exercise 4.3: PDF Comparison with Regard to Differential Entropy

From LNTwww
Revision as of 12:29, 28 September 2021 by Guenter (talk | contribs)

$h(X)$  for four probability density functions

The adjacent table shows the comparison result with respect to the differential entropy  $h(X)$  for

$$f_1(x) = \left\{ \begin{array}{c} 1/(2A) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} |x| \le A \\ {\rm else} \\ \end{array} ,$$
$$f_2(x) = \left\{ \begin{array}{c} 1/A \cdot \big [1 - |x|/A \big ] \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} |x| \le A \\ {\rm else} \\ \end{array} ,$$
$$f_3(x) = \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}|x|}\hspace{0.05cm}.$$

The values for the  Gaussian distribution   ⇒   $f_X(x) = f_4(x)$  with

$$f_4(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \cdot {\rm e}^{ - \hspace{0.05cm}{x ^2}/{(2 \sigma^2})}$$

are not yet entered here.  These are to be determined in subtasks  (1)  to  (3) .

Each probability density function  $\rm (PDF)$  considered here is

  • symmetric about  $x = 0$    ⇒   $f_X(-x) = f_X(x)$
  • and thus zero mean   ⇒  $m_1 = 0$.


In all cases considered here, the differential entropy can be represented as follows:

  • Under the constraint  $|X| ≤ A$   ⇒    peak constraint  $($German:  "Spitzenwertbegrenzung"  or  "Amplitudenbegrenzung"   ⇒   Identifier:  $\rm A)$:
$$h(X) = {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.01cm}\rm A} \cdot A) \hspace{0.05cm},$$
  • Under the constraint  ${\rm E}\big [|X – m_1|^2 \big ] ≤ σ^2$   ⇒   power constraint  $($German:  "Leistungsbegrenzung"   ⇒   Identifier:  $\rm L)$:
$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.01cm}\rm L} \cdot \sigma^2) \hspace{0.05cm}.$$

The larger the respective parameter  ${\it \Gamma}_{\hspace{-0.01cm}\rm A}$  or  ${\it \Gamma}_{\hspace{-0.01cm}\rm L}$  is, the more favorable is the present PDF in terms of differential entropy for the agreed constraint.





Hints:

  • The exercise belongs to the chapter  Differential Entropy.
  • Useful hints for solving this task can be found in particular on the pages
Differential entropy of some peak-constrained random variables
Differential entropy of some power-constrained random variables.



Questions

1

Which equation is valid for the logarithm of the Gaussian PDF?

It holds:   $\ln \big[f_X(x) \big] = \ln (A) - x^2/(2 \sigma^2)$   with   $A = f_X(x=0)$.
Es It holds:   $\ln \big [f_X(x) \big] = A - \ln (x^2/(2 \sigma^2)$   with   $A = f_X(x=0)$.

2

Which equation holds for the differential entropy of the Gaussian PDF?

It holds:   $h(X)= 1/2 \cdot \ln (2\pi\hspace{0.05cm}{\rm e}\hspace{0.01cm}\cdot\hspace{0.01cm}\sigma^2)$  with the pseudo-unit  "nat".
It holds:   $h(X)= 1/2 \cdot \log_2 (2\pi\hspace{0.05cm}{\rm e}\hspace{0.01cm}\cdot\hspace{0.01cm}\sigma^2)$  with the pseudo-unit  "bit".

3

Complete the missing entry for the Gaussian PDF in the above table.

${\it \Gamma}_{\rm L} \ = \ $

4

What values are obtained for the Gaussian PDF with the DC component  $m_1 = \sigma = 1$?

$P/\sigma^2 \ = \ $

$h(X) \ = \ $

$\ \rm bit$

5

Which of the statements are true for the differential entropy  $h(X)$  considering the  "power constraint"  ${\rm E}\big[|X – m_1|^2\big] ≤ σ^2$?

The Gaussian PDF   ⇒   $f_4(x)$  leads to the maximum  $h(X)$.
The uniform PDF   ⇒   $f_1(x)$  leads to the maximum  $h(X)$.
The triangular PDF   ⇒   $f_2(x)$  is very unfavorable because it is peak-constrained.
The triangular PDF   ⇒   $f_2(x)$  is more favorable than the Laplace PDF   ⇒   $f_3(x)$.

6

Which of the statements are true for  "peak constraint"  to the range  $|X| ≤ A$.  The maximum differential entropy  $h(X)$  is obtained for

a Gaussian PDF   ⇒   $f_4(x)$  followed by a constraint   ⇒  $|X| ≤ A$,
the uniform PDF   ⇒   $f_1(x)$,
the triangular PDF   ⇒   $f_2(x)$.


Solution

(1)  We assume the zero mean Gaussian PDF:

$$f_X(x) = f_4(x) =A \cdot {\rm exp} [ - \hspace{0.05cm}\frac{x ^2}{2 \sigma^2}] \hspace{0.5cm}{\rm mit}\hspace{0.5cm} A = \frac{1}{\sqrt{2\pi \sigma^2}}\hspace{0.05cm}.$$
  • Logarithmizing this function, the result is proposed solution 1:
$${\rm ln}\hspace{0.1cm} \big [f_X(x) \big ] = {\rm ln}\hspace{0.1cm}(A) + {\rm ln}\hspace{0.1cm}\left [{\rm exp} ( - \hspace{0.05cm}\frac{x ^2}{2 \sigma^2}) \right ] = {\rm ln}\hspace{0.1cm}(A) - \frac{x ^2}{2 \sigma^2}\hspace{0.05cm}.$$


(2)  Both proposed solutions are correct.

  • Using the result from  (1) , we obtain for the differential entropy in "nat":
$$h_{\rm nat}(X)= -\hspace{-0.1cm} \int_{-\infty}^{+\infty} \hspace{-0.15cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} [f_X(x)] \hspace{0.1cm}{\rm d}x = - {\rm ln}\hspace{0.1cm}(A) \cdot \int_{-\infty}^{+\infty} \hspace{-0.15cm} f_X(x) \hspace{0.1cm}{\rm d}x + \frac{1}{2 \sigma^2} \cdot \int_{-\infty}^{+\infty} \hspace{-0.15cm} x^2 \cdot f_X(x) \hspace{0.1cm}{\rm d}x = - {\rm ln}\hspace{0.1cm}(A) + {1}/{2} \hspace{0.05cm}.$$
  • Here it is taken into account that the first integral is equal to  $1$   (PDF area).
  • The second integral also gives the variance  $\sigma^2$ an  (if, as here, the equal part  $m_1 = 0$ ).
  • Substituting the abbreviation variable  $A$, we obtain:
$$h_{\rm nat}(X) \hspace{-0.15cm} = \hspace{-0.15cm} - {\rm ln}\hspace{0.05cm}\left (\frac{1}{\sqrt{2\pi \sigma^2}} \right ) + {1}/{2} = {1}/{2}\cdot {\rm ln}\hspace{0.05cm}\left ({2\pi \sigma^2} \right ) + {1}/{2} \cdot {\rm ln}\hspace{0.05cm}\left ( {\rm e} \right ) = {1}/{2} \cdot {\rm ln}\hspace{0.05cm}\left ({{2\pi {\rm e} \cdot \sigma^2}} \right ) \hspace{0.05cm}.$$
  • If the differential entropy  $h(X)$  is not to be given in "nat" but in "bit",  choose base 2 for the logarithm:  $2$ :
$$h_{\rm bit}(X) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ({{2\pi {\rm e} \cdot \sigma^2}} \right ) \hspace{0.05cm}.$$


(3)  Thus, according to the implicit definition  $h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.01cm}\rm L} \cdot \sigma^2)$ , the parameter is:

$${\it \Gamma}_{\rm L} = 2\pi {\rm e} \hspace{0.15cm}\underline{\approx 17.08} \hspace{0.05cm}.$$


(4)  We now consider a Gaussian probability density function with mean  $m_1$:

$$f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \cdot {\rm exp}\left [ - \hspace{0.05cm}\frac{(x -m_1)^2}{2 \sigma^2} \right ] \hspace{0.05cm}.$$
  • The second moment  $m_2 = {\rm E}\big [X ^2 \big ]$  can also be called the power  $P$ , while for the variance holds (is also the second central moment):
$$\sigma^2 = {\rm E}\big [|X – m_1|^2 \big ] = \mu_2.$$
  • According to Steiner's theorem,  $P = m_2 = m_1^2 + \sigma^2$.  Thus, assuming  $m_1 = \sigma = 1$  ist somit  $\underline{P/\sigma^2 = 2}$.
  • Due to the DC component, the power is indeed doubled.  However, this does not change anything in the differential entropy.  Thus, it is still valid:
$$h(X) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ({{2\pi {\rm e} \cdot \sigma^2}} \right )= {1}/{2} \cdot {\rm log}_2\hspace{0.05cm} (17.08)\hspace{0.15cm}\underline{\approx 2.047\,{\rm bit}} \hspace{0.05cm}.$$


Completed results table for  $h(X)$

(5)  The numerical values of the characteristics  ${\it \Gamma}_{\rm L}$  and  ${\it \Gamma}_{\rm A}$  are also entered in the completed table.

A probability density function  $f_X(x)$  is always particularly favorable under power constraints if the value  ${\it \Gamma}_{\rm L}$  (right column)  is as large as possible.  Then the differential entropy  $h(X)$  is also large.

The numerical results can be interpreted as follows:

  • As is proved in thetheory part, the Gaussian distribution  $f_4(x)$  leads here to the largest possible  ${\it \Gamma}_{\rm L} ≈ 17.08$   ⇒   the proposed solution 1 is correct (the value in the last column is marked in red).
  • For the uniform distribution  $f_1(x)$  the parameter ${\it \Gamma}_{\rm L} = 12$  is the smallest in the whole table   ⇒   the proposed solution 2 is wrong.
  • The triangular distribution  $f_2(x)$  is with  ${\it \Gamma}_{\rm L} = 16.31$  günstiger als die Gleichverteilung   ⇒   the proposed solution 3 is wrong.
  • The triangular distribution  $f_2(x)$  is also better than the Laplace distribution  $f_2(x) \ \ ({\it \Gamma}_{\rm L} = 14.78)$   ⇒   the proposed solution 4 is correct.



(6)  A PDF  $f_X(x)$  is favorable in terms of differential entropy  $h(X)$ under the peak constraint   ⇒   $|X| ≤ A$, if the weighting factor  ${\it \Gamma}_{\rm A}$  (middle column)  is as large as possible:

  • As shown in the theory section, the uniform distribution   $f_1(x)$  here leads to the largest possible  ${\it \Gamma}_{\rm A}= 2$   ⇒   the proposed solution 2 is correct (the value in the middle column is marked in red).
  • The triangular distribution  $f_2(x)$ , which is also peak-constrained, is characterized by a somewhat smaller  ${\it \Gamma}_{\rm A}= 1.649$    ⇒   dthe proposed solution 3 is incorrect.
  • The Gaussian distribution  $f_4(x)$  is infinitely extended.  A peak constraint on  $|X| ≤ A$ here leads to Dirac functions in the PDF   ⇒   $h(X) \to - \infty$, see sample solution to Exercise 4.2Z, subtask (4).
  • The same would be true for the Laplace distribution  $f_3(x)$ .