Exercise 2.1: DSB-AM with Cosine? Or with Sine?

From LNTwww
Revision as of 13:58, 19 November 2021 by Reed (talk | contribs)

Spectrum: Analytical Signal

Let us consider the amplitude modulation of the source signal  $q(t)$  with the carrier signal  $z(t)$. These signals are given by:

$$q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
$$z(t) = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$

The carrier frequency is known to be $f_{\rm T} = 40\text{ kHz}$.  The other system parameters  $A_{\rm N}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  and  $ϕ_{\rm T}$  are to be determined in this exercise.

The spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$  at the modulator output is also given (see graph):

$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$

Here, the abbreviations $f_{30} = 30\text{ kHz}$ and $f_{50} = 50\text{ kHz}$ are used.

As a reminder, the spectrum  $S_+(f)$  is obtained from  $S(f)$ by

  • truncating the components at negative frequencies and
  • doubling positive frequencies.





Hints:

$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \big[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\big ] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha) = \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}+ \hspace{0.05cm} \alpha) = -\sin(\alpha) \hspace{0.05cm}.$$


Questions

1

Find the spectrum  $S(f)$.  Which of the following statements are correct?

$S(f)$  consists of four Dirac functions.
All Dirac weights have the same magnitude $2\text{ V}$.
All Dirac weights are imaginary.

2

what is the modulated signal  $s(t)$?  Which statement is true?

Es handelt sich um ZSB–AM ohne Träger.
Es handelt sich um ZSB–AM mit Träger.

3

State the message signal frequency $f_{\rm N}$ .

$f_{\rm N} \ = \ $

$\ \text{kHz}$

4

Determine the phases of the source and carrier signals.

$ϕ_{\rm N} \ = \ $

$\ \text{degrees}$
$ϕ_{\rm T} \ = \ $

$\ \text{degrees}$

5

What is the amplitude of the message signal?

$A_{\rm N} \ = \ $

$\ \text{V}$


Solution

(1)  Answerss 1 and 3 are correct:

  • At positive frequencies,  $S_+(f)$  is obtained from   $S(f)$  by doubling.
  • It follows that the impulse weights of  $S(f)$  are each only   ${\rm j} · 1 \text{ V}$ .
  • Because of the assignment theorem,   $S(f)$  must be an odd function.
  • DTherefore,   $S(f)$  has two more Dirac functions at $f = -f_{30}$  and $f = -f_{50}$, each with weight  $-{\rm j} · 1 \text{ V}$:
$$S(f) = 1\,{\rm V} \cdot \big[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\big] \hspace{0.05cm}.$$


(2)  The inverse Fourier transform of   $S(f)$  with  $ω_{30} = 2π · f_{30}$  and  $ω_{50} = 2πf_{50}$  leads to the following signal:

$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$
  • This does not contain any component at the carrier frequency $f_{\rm T} = 40\text{ kHz}$, so the first statement is true.


(3)  Bei ZSB–AM ohne Träger beinhaltet  $s(t)$  nur die beiden Frequenzen $f_{\rm T} – f_{\rm N}$  und  $f_{\rm T} + f_{\rm N}$.

  • Daraus folgt mit $f_{\rm T} = 40\text{ kHz}$  für die Nachrichtenfrequenz:   $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm kHz}.$


(4)  Bei ZSB–AM ohne Träger gilt:

$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
$$\Rightarrow \hspace{0.5cm} s(t) = \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$
  • Ein Vergleich mit dem Ergebnis der Teilaufgabe  (2)  zeigt, dass gelten muss:
$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N}) = -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$
$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N}) = -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$
  • Beide Gleichungen sind gleichzeitig nur mit der Phase  $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$  zu erfüllen.
  • Aus der letzten angegebenen trigonometrischen Beziehung folgt außerdem  $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.


(5)  Ein Vergleich der Ergebnisse aus  (2)  und  (4)  führt auf  $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$.  Damit lauten die Gleichungen der an der Modulation beteiligten Signale:

$$q(t ) = 4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
$$z(t) = 1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$