Exercise 2.5Z: Flower Meadow
Ein Bauer freut sich über die Blütenpracht auf seinem Grund und möchte wissen, wie viele Löwenzahn gerade auf seiner Wiese blühen.
- Er weiß, dass die Wiese eine Fläche von $5000$ Quadratmeter hat und außerdem weiß er noch von der Landwirtschaftsschule, dass die Anzahl der Blumen in einem kleinen Gebiet stets poissonverteilt ist.
- Er steckt über der gesamten Wiese – zufällig verteilt – zehn Quadrate mit einer jeweiligen Kantenlänge von $\text{25 cm}$ ab und zählt in jedem dieser Quadrate die Blumen. Dabei kommt er zu folgendem Ergebnis:
- $$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$
Betrachten Sie diese Zahlenwerte als zufällige Ergebnisse der diskreten Zufallsgröße $z$.
Es ist offensichtlich, dass die Stichprobenmenge mit $10$ sehr klein ist, aber – soviel sei verraten – der Bauer hat Glück. Überlegen Sie sich zunächst, wie Sie zur Lösung dieser Aufgabe vorgehen würden, und beantworten Sie dann die folgenden Fragen.
Hinweise:
- Die Aufgabe gehört zum Kapitel Poissonverteilung.
- Bezug genommen wird auch auf das Kapitel Momente einer diskreten Zufallsgröße.
Fragebogen
Musterlösung
(2) Für den quadratischen Mittelwert der Zufallsgröße $z$ gilt entsprechend:
- $$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
- Die Varianz ist nach dem Satz von Steiner somit gleich
- $$\sigma_z^2 =12 -3^2 = 3$$
- und dementsprechend die Streuung
- $$\underline{\sigma_z \approx 1.732}.$$
(3) Richtig sind die Lösungsvorschläge 1, 2 und 4:
- Mittelwert und Streuung stimmen hier überein. Dies ist ein Indiz für die Poissonverteilung mit der Rate $\lambda = 3$ (gleich dem Mittelwert und gleich der Varianz, nicht gleich der Streuung).
- Natürlich ist es fragwürdig, diese Aussage auf der Basis von nur zehn Werten zu treffen. Bei den Momenten ist eine geringere Stichprobenanzahl aber weniger gravierend als beispielsweise bei den Wahrscheinlichkeiten.
(4) Insgesamt gibt es $80000$ solcher Quadrate mit jeweils drei Blumen im Mittel.
- Dies lässt auf insgesamt $\underline{B = 240}$ Tausend Blumen schließen.
(5) Diese Wahrscheinlichkeit ergibt sich gemäß der Poissonverteilung zu
- $${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$
- Die dieser Aufgabe zugrunde gelegte kleine Stichprobenmenge $N = 10$ hätte allerdings auf die Wahrscheinlichkeit ${\rm Pr}(z = 0) = { 10\%}$ hingedeutet, da nur in einem einzigen Quadrat keine einzige Blume gezählt wurde.