Exercise 3.2: Spectrum with Angle Modulation
The following equations are assumed here:
- Source signal:
- q(t)=2V⋅sin(2π⋅3kHz⋅t),
- Transmit signal:
- s(t)=1V⋅cos[2π⋅100kHz⋅t+KM⋅q(t)],
- Received signal (ideal channel):
- r(t)=s(t)=1V⋅cos[2π⋅100kHz⋅t+ϕ(t)],
- ideal demodulator:
- v(t)=1KM⋅ϕ(t).
The graphs shows the n–th order Bessel functions of the first kind Jn(η) in table form.
Hints:
- This exercise belongs to the chapter Phase Modulation.
- Particular reference is made to the pages Spectral function of a phase-modulated sine signal and Interpretation of the Bessel spectrum.
Questions
Solution
(2) An angle modulationn (PM, FM) always results in nonlinear distortion when the channel is bandlimited.
- In contrast, double-sideband amplitude modulation (DSB-AM) here enables distortion-free transmission with B_{\rm K} = 6 \ \rm kHz ; ⇒ Answer 1.
(3) The modulation index (or phase deviation) is equal to η = K_{\rm M} · A_{\rm N} for phase modulation.
- Thus, the modulator constant must be set to K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}} to give η = 1 .
(4) A so-called Bessel spectrum is present:
- S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
- This is a discrete spectrum with components at f = n · f_{\rm N}, where n is an integer.
- The weights of the Dirac functions are given by the Bessel functions. When A_{\rm T} = 1\ \rm V , one obtains:
- S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
- S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
- S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
- Due to the symmetry {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta) , the spectral line at f = -3 \ \rm kHz is obtained as:
- S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.
Note: For the spectral value at f = 0 we should actually write:
- S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
- This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
- The same applies for all discrete spectral line.
(5) S_+(f) ergibt sich aus S_{\rm TP}(f) durch Verschiebung um f_{\rm T} nach rechts. Deshalb ist
- S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
- Das tatsächliche Spektrum unterscheidet sich von S_+(f) bei positiven Frequenzen um den Faktor 1/2:
- S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
- Allgemein kann geschrieben werden:
- S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.
(6) Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien {\rm J}_{|n|>3} außer Acht gelassen werden.
- Damit erhält man B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.
(7) Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:
- für η = 2: B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
- für η = 3: B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}.