Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.2: Spectrum with Angle Modulation

From LNTwww
Revision as of 15:52, 14 March 2022 by Reed (talk | contribs) (→‎Solution)

Table of Bessel functions

The following equations are assumed here:

  • Source signal:
q(t)=2Vsin(2π3kHzt),
  • Transmit signal:
s(t)=1Vcos[2π100kHzt+KMq(t)],
  • Received signal (ideal channel):
r(t)=s(t)=1Vcos[2π100kHzt+ϕ(t)],
  • ideal demodulator:
v(t)=1KMϕ(t).

The graphs shows the   n–th order Bessel functions of the first kind   Jn(η)  in table form.





Hints:


Questions

1

Which modulation method is used here?

Amplitude modulation.
Phase modulation.
Frequency modulation.

2

Which modulation method would you choose if the channel bandwidth was only  BK=10 kHz ?

Amplitude modulation.
Phase modulation.
Frequency modulation.

3

How should one choose the modulator constant KM  for a phase deviation of  η = 1 ?

K_{\rm M} \ = \

\ \rm 1/V

4

Calculate the spectrum  S_{\rm TP}(f)  of the equivalent low-pass signal  s_{\rm TP}(t).  What are the weights of the spectral lines at  f = 0  and  f = -3 \ \rm kHz?

S_{\rm TP}(f = 0)\ = \

\ \rm V
S_{\rm TP}(f = -3\ \rm kHz) \ = \

\ \rm V

5

Calculate the spectra of the analytical signal s_{\rm +}(t)  and the physical signal  s(t).  What are the weights of the spectral lines at  f = 97 \ \rm kHz?

S_+(f = 97 \ \rm kHz)\ = \

\ \rm V
S(f = 97 \ \rm kHz)\hspace{0.32cm} = \

\ \rm V

6

What is the required channel bandwidth  B_{\rm K}  for   η = 1, if one ignores pulse weights smaller (in magnitude) than 0.01 ?

η = 1\text{:} \ \ \ B_{\rm K}\ = \

\ \rm kHz

7

What would be the channel bandwidths for  η = 2  and  η = 3 ?

η = 2\text{:} \ \ \ B_{\rm K}\ = \

\ \rm kHz
η = 3\text{:} \ \ \ B_{\rm K}\ = \

\ \rm kHz


Solution

(1)  The phase  ϕ(t)  is proportional to the source signal  q(t)   ⇒   this is a phase modulation   ⇒   Answer 2.


(2)  An angle modulationn  (PM, FM)  always results in nonlinear distortion when the channel is bandlimited.

  • In contrast, double-sideband amplitude modulation  (DSB-AM)  here enables distortion-free transmission with  B_{\rm K} = 6 \ \rm kHz ; ⇒   Answer 1.


(3)  The modulation index (or phase deviation) is equal to  η = K_{\rm M} · A_{\rm N} for phase modulation.

  • Thus, the modulator constant must be set to  K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}  to give   η = 1 .


(4)  A so-called Bessel spectrum is present:

S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
  • This is a discrete spectrum with components at   f = n · f_{\rm N}, where  n  is an integer.
  • The weights of the Dirac functions are given by the Bessel functions.  When  A_{\rm T} = 1\ \rm V , one obtains:
PM spectrum in the equivalent low-pass range
S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
  • Due to the symmetry   {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta) , the spectral line at   f = -3 \ \rm kHz is obtained as:
S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.

Note:  For the spectral value at  f = 0  we should actually write:

S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
  • This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
  • The same applies for all discrete spectral line.


(5)  S_+(f)  ergibt sich aus  S_{\rm TP}(f)  durch Verschiebung um  f_{\rm T}  nach rechts.  Deshalb ist

S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
  • Das tatsächliche Spektrum unterscheidet sich von  S_+(f)  bei positiven Frequenzen um den Faktor  1/2:
S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
  • Allgemein kann geschrieben werden:
S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.


(6)  Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien  {\rm J}_{|n|>3}  außer Acht gelassen werden.

  • Damit erhält man  B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.


(7)  Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:

  • für η = 2:     B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
  • für η = 3:     B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}.