Exercise 4.4Z: Signal-to-Noise Ratio with PCM

From LNTwww
Revision as of 14:17, 9 April 2022 by Guenter (talk | contribs)

Signal-to-noise ratio of PCM 30/32 compared to ZSB amplitude modulation

The graph shows the signal-to-noise ratio  10lg ρv  for pulse code modulation  (PCM)  compared to analog double-sideband amplitude modulation, abbreviated as  "DSBAM". 

For the latter,   ρv=ξ,  where the persormanc parameter

ξ=α2PSN0fN

summarizes the following system parameters:

  • the frequency-independent attenuation factor  α  of the transmission channel,
  • the power  PS  of the transmit signal  s(t),&nbsp, also called  "transmit power"  for short,
  • the message frequency  fN  (bandwidth)  of the cosine source signal  q(t),
  • the noise power density  N0  of the AWGN noise.


For the PCM system,  the following approximation for the sink SNR was given on the page  "Estimation of SNR degradation due to bit errors",  which also takes into account transmission errors due to AWGN noise:

ρυ=122N+4pB.
  • Here  N  denotes the number of bits per sample and  pB  the bit error probability.
  • Since  ξ  can in digital modulation also be interpreted as the  "signal energy per bit"  related to the  "noise power density"  (EB/N0),  with the complementary Gaussian error signal  Q(x)  approximately:
pB=Q(2ξ).



Hints:


Questions

1

How many bits per sample   ⇒   N=N1  does the PCM system under consideration use?

N1 = 

2

How many bits per sample   ⇒   N=N2  would have to be used to achieve  10lg ρv>64 dB  ("music quality")?

N2 = 

3

What  (logarithmized)  performance parameter  ξ40 dB  is required for 8-bit PCM to have a signal-to-noise ratio of  40 dB ?

10lg ξ40 dB = 

 dB

4

By what factor could the transmit power be reduced for PCM compared to  "DSB-AM"  to still achieve  10lg ρv=40 dB ?

KAM → PCM = 

5

What is the bit error probability  pB  for  10lg ξ=6 dB  and  N=N1   ⇒   result of the subtask  (1)?

pB = 

 %

6

What would be the SNR for the same  ξ  with a 3-bit PCM   ⇒   N=3 ?

10lg ρv = 

 dB


Solution

(1)  The horizontal section of the PCM curve is determined by the quantization noise alone. 

  • Here, with the quantization step number  M=2N:
ρv(ξ)=ρQ=M2=22N10lgρv6dBN.
  • From the readable signal-to-noise ratio  10lg ρv48 dB  it follows  N1=8_  bits per sample and for the quantization level number  M=256.


(2)  From the above approximation, we obtain for  N2=11_  bits per sample   ⇒   M=2048  the signal-to-noise ratio  66dB.

  • With  N=10   ⇒   M=1024  one reaches only approx.  60 dB.
  • For the compact disc (CD), the PCM parameters  N=16   ⇒   M=65536   ⇒   10lg ρv>96 dB  are used.


(3)  For double sideband amplitude modulation, this would require  10lg ξ=40 dB .

  • As can be seen from the graph on the data page, this abscissa value for the given PCM is lower by  30 dB ⇒  10lg ξ40 dB=10 dB_.


(4)  The logarithmic value  30 dB  corresponds to a power reduced by a factor  103=1000_  .


(5)  From the graph on the information page, it can be seen that the abscissa value  10lg ξ=6 dB  results in the signal-to-noise ratio  20 dB  .

  • From  10lg ρv=20 dB  follows  ρv=100  and thus further  (with  N=N1=8):
ρυ=122N+4pB11.5105+4pB=100pB=0.011.510542.5%_.


(6)  With the same  ξ  the bit error probability is still  pB=0.025.  Thus, with  N=3  (bits per sample):

ρυ=126+4pB=10.015625+0.013910lgρυ15.9dB_.

Further, it should be noted:

  • With only three bits per sample, the quantization noise power  (PQ=0.015625)  is already larger than the error noise power  (PF=0.01).
  • By increasing the transmit power, the signal-to-noise ratio could be maximum  10lg ρv=18 dB  because of quantization, if no bit errors occur  (PF=0).