Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.12: Trellis Diagram for Two Precursors

From LNTwww
Revision as of 11:36, 8 June 2022 by Hwang (talk | contribs)

Trellis diagram for two precursors

We assume the basic pulse values   g0g_{\rm –1}  and  g_{\rm –2}

  • This means that the decision on the symbol   a_{\rm \nu}  is also influenced by the subsequent coefficients   a_{\rm \nu +1}  and  a_{\rm \nu +2}
  • Thus, for each time point   \nu,  exactly eight error quantities   \varepsilon_{\rm \nu}  have to be determined, from which the minimum total error quantities   {\it \Gamma}_{\rm \nu}(00){\it \Gamma}_{\rm \nu}(01){\it \Gamma}_{\rm \nu}(10)  and  {\it \Gamma}_{\rm \nu}(11)  can be calculated.
  • Here, for example,   {\it \Gamma}_{\rm \nu}(01)  provides information about the symbol   a_{\rm \nu}  under the assumption that   a_{\rm \nu +1} = 0  and  a_{\rm \nu +2} = 1  will be.
  • Here, the minimum total error quantity   {\it \Gamma}_{\rm \nu}(01)  is the smaller value obtained from the comparison of
\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and} \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].

To calculate the minimum total error quantity   {\it \Gamma}_2(10)  in subtasks (1) and (2), assume the following numerical values:

  • unipolar amplitude coefficients:  a_{\rm \nu} ∈ \{0, 1\},
  • basic pulse values   g_0 = 0.5g_{\rm –1} = 0.3g_{\rm –2} = 0.2,
  • applied detection sample:  d_2 = 0.2,
  • Minimum total error quantities at time  \nu = 1:
{\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.

The graph shows the simplified trellis diagram for time points   \nu = 1  to   \nu = 8

  • Blue branches come from either   {\it \Gamma}_{\rm \nu –1}(00)  or   {\it \Gamma}_{\rm \nu –1}(01)  and denote a hypothetical "0".
  • In contrast, all red branches – starting from the   {\it \Gamma}_{\rm \nu –1}(10)  or   {\it \Gamma}_{\rm \nu –1}(11)  states – indicate the symbol "1".



Notes:

  • All quantities here are to be understood normalized.
  • Also, assume unipolar and equal probability amplitude coefficients:   {\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.
  • The topic is also covered in the interactive applet  "Properties of the Viterbi Receiver"


Questions

1

Calculate the following error quantities:

\varepsilon_2(010) \ = \

\varepsilon_2(011) \ = \

\varepsilon_2(110) \ = \

\varepsilon_2(111) \ = \

2

Calculate the following minimum total error quantities:

{\it \Gamma}_2(10) \ = \

{\it \Gamma}_2(11) \ = \

3

What are the symbols output by the Viterbi receiver?

The first seven symbols are  1011010.
The first seven symbols are  1101101.
The last symbol  a_8 = 1  is safe.
No definite statement can be made about the symbol  a_8


Solution

(1)  The first error quantity is calculated as follows:

\varepsilon_{2}(010) = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01} \hspace{0.05cm}.

Correspondingly, for the other error quantities:

\varepsilon_{2}(011) \ = \ [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},
\varepsilon_{2}(110) \ = \ [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},
\varepsilon_{2}(111) \ = \ [0.2 -0.5- 0.3-0.2]^2\hspace{0.15cm}\underline {=0.64} \hspace{0.05cm}.


(2)  The task is to find the minimum value of each of two comparison values:

{\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] = {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21} \hspace{0.05cm},
{\it \Gamma}_{2}(11) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(011), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(111)\right] = {\rm Min}\left[0.2+ 0.09, 1.2 + 0.64\right]\hspace{0.15cm}\underline {= 0.29} \hspace{0.05cm}.


(3)  The first and last solutions are correct:

  • The sequence 1011010 can be recognized from the continuous path:     "red – blue – red – red – blue – red – blue".
  • On the other hand, no final statement can be made about the symbol a_8 at time \nu = 8:
  • Only under the hypothesis a_9 = 1 and a_{\rm 10} = 1 one would decide for a_8 = 0, under other hypotheses for a_8 = 1.