Exercise 1.08Z: Equivalent Codes

From LNTwww
Revision as of 14:07, 6 July 2022 by Noah (talk | contribs)

Four  $(6, 3)$ block codes

In the graph, the mappings  $\underline{u} \rightarrow \underline{x}$  for different codes are given, each characterized below by the generator matrix  $\boldsymbol{\rm G}$  and the parity-check matrix  $\boldsymbol{\rm H}$  respectively:

  • ${\boldsymbol{\rm Code \ A}}$:
$${ \boldsymbol{\rm G}}_{\rm A} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • ${\boldsymbol{\rm Code \ B}}$:
$${ \boldsymbol{\rm G}}_{\rm B} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm} { \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &0 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • ${\boldsymbol{\rm Code \ C}}$:
$${ \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1\\ 0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm C} = \begin{pmatrix} 1 &0 &1 &1 &0 &0\\ 0 &1 &1 &0 &1 &0\\ 1 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  • ${\boldsymbol{\rm Code \ D}}$:
$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

This task is to investigate which of these codes or code pairs are

  • are systematic,
  • are identical  (that is:   Different codes have same code words),
  • are equivalent  (that is:   Different codes have same code parameters).




Hints :


Questions

1

Which of the codes listed below are systematic?

Code  $\rm A$,
Code  $\rm B$,
Code  $\rm C$,
Code  $\rm D$.

2

Which of the given code pairs are identical?

Code  $\rm A$  and code  $\rm B$,
Code  $\rm B$  and code  $\rm C$,
Code  $\rm C$  and code  $\rm D$.

3

Which of the given code pairs are equivalent but not identical?

Code  $\rm A$  and code  $\rm B$,
Code  $\rm B$  and code  $\rm C$,
Code  $\rm C$  and code  $\rm D$.

4

How do the generator matrices  $G_{\rm B}$  and  $G_{\rm C}$ differ?

By different linear combinations of different rows.
By cyclic shifting of rows by  $1$  down.
By cyclic shifting of columns by  $1$  to the right.?

5

For which codes applies  ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$?

Code  $\rm A$,
Code  $\rm B$,
Code  $\rm C$,
Code  $\rm D$.


Solution

(1)  Correct are the answers 1, 3 and 4:

  • For a systematic (6, 3) block code, the following must hold:
$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$

This condition is satisfied by code A, code C, and code D, but not by code B.


(2)  Correct is only answer 1:

  • Only code A and code B are identical codes. They contain exactly the same code words and differ only by other assignments $\underline{u} \rightarrow \underline{x}$.
  • As indicated in the sample solution to Exercise 1.8 (3), one gets from the generator matrix ${ \boldsymbol{\rm G}}_{\rm B}$ to the generator matrix ${ \boldsymbol{\rm G}}_{\rm A}$
  • by swapping/permuting rows alone, or
  • by replacing a row with the linear combination between that row and another.


(3)  Thus, the correct answer is answer 2 alone:

  • Code A and code B are more than equivalent, namely identical.
  • Code C and D also differ, for example, by the minimum Hamming distance $d_{\rm min} = 3$ and $d_{\rm min} = 2$, respectively, and are thus also not equivalent.
  • Code B and code C, on the other hand, show the same properties, for example $d_{\rm min} = 3$ holds for both. However, they contain different codewords.



(4)  Correct is answer 3:

  • The last column of ${ \boldsymbol{\rm G}}_{\rm B}$ gives the first column of ${ \boldsymbol{\rm G}}_{\rm C}$.
  • The first column of ${ \boldsymbol{\rm G}}_{\rm B}$ gives the second column of ${ \boldsymbol{\rm G}}_{\rm C}$.
  • The second column of ${ \boldsymbol{\rm G}}_{\rm B}$ gives the third column of ${ \boldsymbol{\rm G}}_{\rm C}$, etc.


(5)  All statements are true:

  • The condition ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$ holds for all linear codes.