Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.09: Extended Hamming Code

From LNTwww
Revision as of 17:06, 6 July 2022 by Noah (talk | contribs)

(7, 4) Hamming code (yellow background)
and  (8, 4) extension (green).

Two codes are to be compared, whose code tables are given on the right.

  • The first four bits of each code word  x_  are equal to the respective information word  u_  (black font).
  • Then follow  m=nk  parity bit (red font).


The systematic  (7, 4)-Hamming code has already been discussed in  Exercise 1.6  and  Exercise 1.7 . The parity-check matrix and generator matrix of this code are given as follows:

{ \boldsymbol{\rm H}}_1 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm},
{ \boldsymbol{\rm G}}_1 = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.

In the further course of the exercise this (yellow highlighted) code is called  \mathcal{C}_{1} .


The right column in the above table specifies a block code with parameters  n = 8  and  k = 4 , usually referred to in the literature as the "Extended Hamming Code". We refer to this code (highlighted in green) in the following  \mathcal{C}_{2}  and denote its parity-check matrix by  { \boldsymbol{\rm H}}_{2}  and the corresponding generator matrix by  { \boldsymbol{\rm G}}_{2} .

The questions for this exercise are related to




Hints:



Questions

1

Specify the code rates of  \mathcal{C}_{1}  and  \mathcal{C}_{2} .

\mathcal{C}_{1}\text{:}\hspace{0.4cm}R \ = \

\mathcal{C}_{2}\text{:}\hspace{0.4cm}R \ = \

2

Give the minimum distances of  \mathcal{C}_{1}  and  \mathcal{C}_{2}  .

\mathcal{C}_{1}\text{:}\hspace{0.4cm}d_{\rm min} \ = \

\mathcal{C}_{2}\text{:}\hspace{0.4cm}d_{\rm min} \ = \

3

What is the format of the parity-check matrix  \boldsymbol{\rm H}_{2}  of  \mathcal{C}_{2}?

{\rm Spaltenzahl} \ = \

{\rm Zeilenzahl} \ = \

4

Derive the equation for the code bit  x_ {8} (= p_{4})  from the code table. Which specification is correct?

x_{8} = 0.
x_{8} = x_{1}⊕x_{2}⊕x_{4}⊕x_{5}.
x_{8} = x_{1}⊕x_{2}⊕x_{3}⊕x_{4}⊕x_{5}⊕x_{6}⊕x_{7}.

5

Which statements are true for  { \boldsymbol{\rm H}}_{2}? Hint:  Correct are 3 out of 4 answers.

Row 1 reads:   1 1 0 1 1 0 0 0.
Row 2 reads:   0 1 1 1 0 1 0 0.
Row 3 reads:   0 0 0 0 1 1 1 1.
Row 4 reads:   1 1 1 1 1 1 1 1.

6

Which transformation is allowed for the last row of  { \boldsymbol{\rm H}}_{2} ?

1 1 1 1 1 1 1 1 → 0 0 0 0 0 0 0 0,
1 1 1 1 1 1 1 1 → 1 1 1 0 0 0 0 1,
1 1 1 1 1 1 1 1 → 0 0 1 0 1 0 0 0.

7

Give the corresponding generator matrix  { \boldsymbol{\rm G}}_{2} . Which statements are true?

{ \boldsymbol{\rm G}}_{2}  has same format as matrix  { \boldsymbol{\rm G}}_{1} of a  \text{(7, 4)} code.
{ \boldsymbol{\rm G}}_{2}  starts like { \boldsymbol{\rm G}}_{1}  with a diagonal matrix  { \boldsymbol{\rm I}}_{4} .
{ \boldsymbol{\rm G}}_{2}  in the considered example has the same format as  { \boldsymbol{\rm H}}_{2} .


Solution

(1)  The corresponding equation for the code rate in both cases is R = k/n\text{:}

  • \mathcal{C}_{1} \text{:} \ n = 7, k = 4\ ⇒ \ R = 4/7 \underline {= 0.571},
  • \mathcal{C}_{2} \text{:} \ n = 8, k = 4 \ ⇒ \ R = 4/8 \underline { =0.5}.


(2)  The minimum distance of the (7, 4, 3)-Hamming code \mathcal{C}_{1} is d_{\rm min} \underline{= 3}, which can be read from the naming alone.

  • From the table on the information page, it can be seen that for the extended Hamming code d_{\rm min} \underline{= 4} holds.
  • \mathcal{C}_{2} is therefore also called a (8, 4, 4) block code in the literature.


(3)  The parity-check matrix { \boldsymbol{\rm H}} generally consists of n columns and m = n - k rows, where m indicates the number of parity-check equations.

  • For the (7, 4, 3)-Hamming code, { \boldsymbol{\rm H}} is a 3 × 7 matrix.
  • For the extended Hamming code   ⇒   code \mathcal{C}_{2}, on the other hand, \underline{n = 8} (column number) and \underline{m = 4} (row number) holds.


(4)  From the code table on the information page you can see that only answer 3 is correct.

  • The parity bit p_{4} is to be determined in such a way that the modulo 2 sum over all bits of the code word results in the value 0.


(5)  It should first be noted that the specification of the parity-check matrix is never unambiguous, if only because the order of the parity-check equations is interchangeable.

  • However, considering that only one of the given rows is wrong, { \boldsymbol{\rm H}}_{2} is uniquely determined:
{ \boldsymbol{\rm H}}_2 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 &0\\ 1 &0 &1 &1 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}.
  • Correct are therefore the statements 1, 2 and 4. The rows of this parity-check matrix represent the four parity-check equations in this order:
x_1\oplus x_2 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm},
x_2 \oplus x_3 \oplus x_4 \oplus x_6 = 0 \hspace{0.05cm},
x_1 \oplus x_3 \oplus x_4 \oplus x_7 = 0 \hspace{0.05cm},
x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 = 0 \hspace{0.05cm}.


(6)  Correct is the answer 2:

  • This result is obtained by replacing the last row with the modulo 2 sum over all four rows, which is allowed.
  • Proposition 1 does not represent a parity-check equation.
  • Proposal 3 represents the parity-check equation x_{3}⊕x_{5} = 0, which also does not correspond to the facts.


According to the correct solution suggestion 2, on the other hand, the parity-check equation becomes

x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 = 0

replaced by the following new parity-check equation:

x_1 \oplus x_2 \oplus x_3 \oplus x_8 = 0 \hspace{0.05cm}.

The modified parity-check matrix is now:

{ \boldsymbol{\rm H}}_2 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 &0\\ 1 &0 &1 &1 &0 &0 &1 &0\\ 1 &1 &1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.


(7)  After this matrix manipulation, { \boldsymbol{\rm H}}_{2} is in the form typical for systematic codes:

{ \boldsymbol{\rm H}}_2 =\left({ \boldsymbol{\rm P}}^{\rm T} \: ; \: { \boldsymbol{\rm I}}_m \right)\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m = 4 {\rm :}\hspace{0.3cm}{ \boldsymbol{\rm H}}_2 =\left({ \boldsymbol{\rm P}}^{\rm T} \: ; \: { \boldsymbol{\rm I}}_4 \right) \hspace{0.05cm}.

Thus, the generator matrix is:

{ \boldsymbol{\rm G_{2}}} =\left({ \boldsymbol{\rm I}}_4 \: ; \: { \boldsymbol{\rm P}}\right) = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 &1\\ 0 &1 &0 &0 &1 &1 &0 &1\\ 0 &0 &1 &0 &0 &1 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.

So the statements 2 and 3 are correct:

  • { \boldsymbol{\rm G}}_{2} starts like { \boldsymbol{\rm G}}_{1} (see specification sheet) with a diagonal matrix { \boldsymbol{\rm I}}_{4} , but unlike { \boldsymbol{\rm G}}_{1} now has 8 columns.
  • In the present case n = 8, k = 4 \ ⇒ \ m = 4 both { \boldsymbol{\rm G}}_{2} and { \boldsymbol{\rm H}}_{2} are 4×8 matrices respectively.