Exercise 1.08: Identical Codes

From LNTwww
Revision as of 16:05, 10 July 2022 by Guenter (talk | contribs)

Assignment of the  $(6, 3)$  block code

We consider a block code  $\mathcal{C}$  described by the following generator matrix:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$

The mapping between the information words  $\underline{u}$  and the code words  $\underline{x}$  can be seen in the table.  It can be seen that this is not a  "systematic code".

By manipulating the generator matrix  $\boldsymbol {\rm G}$,  identical codes can be constructed from it.  This refers to codes with the same code words but different assignments  $\underline{u} \rightarrow \underline{x}$.

The following operations are allowed to obtain identical code:

  • swapping or permuting the rows,
  • Multiplying all rows by a constant vector not equal to  "$\underline{0}$".
  • Replacing a row with a linear combination between this row and another one.


For the code  $\mathcal{C}_{\rm sys}$  sought in subtask  (3)  it is further required to be systematic   ⇒   generator matrix  $\boldsymbol{\rm G}_{\rm sys}$.


Hints:

  • Reference is also made to the so-called  "Singleton bound". 
  • This states that the minimum Hamming distance of a  $(n, k)$  block code is upper bounded:   $d_{\rm min} \le n - k +1.$



Questions

1

Give the characteristics of the given code  $\mathcal{C}$ .

$n \hspace{0.3cm} = \ $

$k \hspace{0.3cm} = \ $

$m \hspace{0.15cm} = \ $

$R \hspace{0.2cm} = \ $

$|\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}| \hspace{-0.05cm} = \ $

$d_{\rm min} \hspace{0.01cm} = \ $

2

Is there any  $(6, 3)$  block code with larger minimum distance?

Yes.
No.

3

What is the generator matrix  ${\boldsymbol{\rm G}}_{\rm sys}$  of the identical systematic code?

The 1st row is   "$1 \ 0 \ 1 \ 1 \ 0 \ 1$".
The 2nd row is   "$0 \ 1 \ 0 \ 1 \ 0 \ 1$".
The 3rd row is   "$0 \ 0 \ 1 \ 0 \ 1 \ 1$".

4

What assignments result from this coding?

$\underline{u} = (0, 0, 0) \ \Rightarrow \ \underline{x}_{\rm sys} = (0, 0, 0, 0, 0, 0)$.
$\underline{u} = (0, 0, 1) \ \Rightarrow \ \underline{x}_{\rm sys}= (0, 0, 1, 0, 0, 1)$.
$\underline{u} = (0, 1, 0) \ \Rightarrow \ \underline{x}_{\rm sys} = (0, 1, 0, 1, 1, 0)$.

5

Which parity bits has the systematic code  $\underline{x}_{\rm sys} = (u_{1},\ u_{2},\ u_{3},\ p_{1},\ p_{2},\ p_{3})$?

$p_{1} = u_{1} \oplus u_{2},$
$p_{2} = u_{2} \oplus u_{3},$
$p_{3} = u_{1} \oplus u_{3}.$


Solution

(1)  The given code  $\mathcal{C}$ is characterized by the following parameters:

  • Number of bits of the code words:  $\underline{n = 6}$,
  • Number of bits of the information words:  $\underline{k = 3}$,
  • Number of parity bit equations:  $\underline{m = n - k = 3}$,
  • Code rate:  $R = k/n = 3/6 \Rightarrow \underline{R = 0.5}$,
  • Number of code words  (code size):  $|\mathcal{C}| = 2^k \Rightarrow \underline{|C| = 8}$,
  • minimum Hamming distance (see table):  $\underline{d}_{\rm min} \underline{= 3}$.


(2)  Correct is $\underline{\rm Yes}$:

  • According to the singleton bound   ⇒   $d_{\rm min} ≤ n - k + 1$.  With  $n = 6$  and  $k = 3$  one obtains $d_{\rm min} ≤ 4$.
  • It is thus quite possible to construct a  $(6, 3)$  block code with larger minimal distance.  How such a code looks,  was kindly not asked.


The minimum distance of all Hamming codes is  $d_{\rm min} = 3$,  and only the special case with  $n = 3$  and  $k = 1$  reaches the limit.  In contrast,  the maximum reach according to the Singleton bound:

  • all  repetition codes  $\rm (RC)$  because  $k = 1$  and  $d_{\rm min} = n$;  this includes the  $\rm (3, 1)$  Hamming code,  which is known to be identical to  $\rm RC\ (3, 1)$,


(3)  Correct are th e solutions 2 and 3:

  • If we swap rows in the generator matrix  $\boldsymbol {\rm G}$,  we arrive at an identical code  $\mathcal{C}'$.  That is,  the codes  $\mathcal{C}$  and  $\mathcal{C}'$  contain the exact same code words.
  • For example,  after cyclic row swapping  $2 \rightarrow 1,\ 3 \rightarrow 2$,  and  $1 \rightarrow 3$,  one obtains the new matrix
$${ \boldsymbol{\rm G}}' = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • The first and the last row of the new matrix already comply with the requirements of a systematic code   ⇒   matrix ${ \boldsymbol{\rm G}_{\rm sys}}$ must start with a diagonal matrix.
  • Replacing row 2 by the modulo 2 sum of rows 2 and 3, we get:
$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • This systematic code contains exactly the same code words as the codes  $\mathcal{C}$  and  $\mathcal{C}'$.


(4)  Correct are the  solutions 1 and 2:

  • Applying the equation  $\underline{x}_{\rm sys} = \underline{u} \cdot \boldsymbol{\rm G}_{\rm sys}$  to the above examples,  we see that the first two statements are correct,  but not the last one.
  • Without calculation one comes to the same result,  if one considers that
  • the systematic code word  $\underline{x}_{\rm sys}$  must start with  $\underline{u}$,
  • the code  $\mathcal{C}_{\rm sys}$  contains the same code words as the given code  $\mathcal{C}$.
  • For  $\underline{u} = (0, 1, 0)$,  the code word is thus  $(0, 1, 0, ?, ?, ?)$. 
  • A comparison with the code table of  $\mathcal{C}$  on the information page leads to  $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.


(5)  Only  statement 1 is correct.  The statements for  $p_{2}$  and  $p_{3}$,  on the other hand,  are exactly reversed.

  • With systematic coding,  the following relationship exists between the generator matrix and the parity-check matrix:
$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
Chart of parity-check equations
  • Applied to the current example,  we obtain thus:
$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • This results in parity-check equations  (see graph):
$$u_1 \oplus u_2 \oplus p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_1 = u_1 \oplus u_2 \hspace{0.05cm},$$
$$ u_1 \oplus u_3 \oplus p_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_2 = u_1 \oplus u_3 \hspace{0.05cm},$$
$$ u_2 \oplus u_3 \oplus p_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_3 = u_2 \oplus u_3 \hspace{0.05cm}.$$