Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.16: Block Error Probability Bounds for AWGN

From LNTwww
Revision as of 17:16, 5 August 2022 by Guenter (talk | contribs)

Function  Q(x)  and approximations;
it holds:  Qu(x)Q(x)Qo(x)

We assume the following constellation:

  • A linear block code with code rate  R=k/n  and distance spectrum  {Wi}, i=1, ... ,n,
  • an AWGN channel characterized by  EB/N0   ⇒   convertible to noise power  σ2,
  • a receiver based on  "soft decision"  as well as the  "maximum likelihood criterion".


Under the assumption valid for the entire exercise that always the zero-word  x_1=(0,0,...  ,0)  is sent, the  "pairwise error probability"  with a different code word  x_l(l=2, ... ,2k):

Pr[x_1x_l]=Q(wH(x_l)/σ2).

The derivation of this relation can be found in  [Liv10].  Used in this equation are:

  • the  "Hamming weight"  wH(x_l)  of the code word  x_l,
  • the  "AWGN noise power"  σ2=(2REB/N0)1.


This allows various bounds to be specified for the block error probability:

p1=2kl=2Pr[x_1x_l]=2kl=2Q(wH(x_l)/σ2),
p2=WdminQ(dmin/σ2),
p3=W(β)1,withβ=e1/(2σ2).
In this case,  replace the distance spectrum  {Wi}  with the weight enumerator function:
{Wi}W(X)=ni=0WiXi=W0+W1X+W2X2+...+WnXn.

In the transition from the  "Union Bound"  p1  to the more imprecise bound  p3  among others

  • Both functions are shown in the above graph  (red and green curve, resp.).


In the  "Exercise 1.16Z"  the relationship between these functions is evaluated numerically and referenced to the bounds  Qo(x) and Qu(x)  which are also drawn in the above graph.



Hints:

  • The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."



Questions

1

Which equation applies to the  "Union Bound"?

p1=2kl=2Wl·Q[(l/σ2)0.5],
p1=ni=1Wi·Q[(i/σ2)0.5].

2

Specify the Union Bound for the  (8,4,4)  code and various  σ.

σ=1.0:p1 = 

 %
σ=0.5:p1 = 

 %

3

Given the same boundary conditions, what does the  "Truncated Union Bound"  provide?

σ=1.0:p2 = 

 %
σ=0.5:p2 = 

 %

4

Which statement is always true  (for all constellations)?

The block error probability is never greater than  p1.
The block error probability is never greater than  p2.

5

How do you get from  p1  to the  "Bhattacharyya Bound"  p3

Replace the error function  Q(x)  with the function  QCR(x).
Set the Bhattacharyya parameter  β=1/σ.
Instead of  {Wi}  uses the weight enumerator function  W(X).

6

Specify the Bhattacharyya Bound for  σ=1  and  σ=0.5 .

σ=1.0:p3 = 

 %
σ=0.5:p3 = 

 %


Solution

(1)  The correct solution is suggestion 2:

  • The distance spectrum  {Wi}  is defined for  i=0, ... , n:
  1. W1  indicates how often the Hamming weight  wH(x_i)=1  occurs.
  2. Wn  indicates how often the Hamming weight  wH(x_i)=n  occurs.


  • With that,  the  "Union Bound"  is:
p1=Pr(UnionBound)=ni=1WiQ(i/σ2).


(2)  The distance spectrum of the  (8,4,4)  code was given as  W0=1, W4=14, W8=1

  • Thus,  one obtains for σ=1:
p1=W4Q(2)+W8Q(22)=142.28102+10.2310232.15%_,
  • For  σ=0.5:
p1=14Q(4)+Q(42)=143.17105+1.11080.0444%_.


(3)  With the minimum distance  dmin=4  we get:

σ=1.0:p2 = W4Q(2)=31.92%_,
σ=0.5:p2 = W4Q(4)p1=0.0444%_.


(4)  The correct solution is  suggestion 1:

  • The  "Union Bound"  - denoted here by  p1 - is an upper bound on the block error probability in all cases.
  • For the bound  p2  ("Truncated Union Bound")  this is not always true.
  • For example,  in the  (7,4,3)  Hamming code   ⇒   W3=W4=7, W7=1  is obtained with standard deviation  σ=1:
p2 = 7Q(3)=74.181020.293,
p1 = p2+7Q(4)+1Q(7)0.455.
  • The actual block error probability is likely to be between  p2=29.3%  and  p1=45.5%  (but this has not been verified).
    That is,   p2 is not an upper bound.


(5)  Correct are  suggested solutions 1 and 3,  as the following calculation for the  (8,4,4)  code shows:

  • It holds  Q(x)QCR(x)=ex2/2.  Thus,  for the Union Bound
p1=W4Q(4/σ2)+W8Q(8/σ2)
another upper bound can be specified:
p1W4e4/(2σ2)+W8e8/(2σ2).
  • With  β=e1/(2σ2)  can be written for this also  (so the given  β=1/σ  is wrong):
p1W4β4+W8β8.
  • The weight function of the  (8,4,4)  code is:
W(X)=1+W4X4+W8X8W(β)1=W4β4+W8β8p3=W(β)1p1.


(6)  With  σ=1,  the Bhattacharyya parameter is  β=e0.5=0.6065,  and thus one obtains for the Bhattacharyya Bound:

p3=14β4+β8=140.135+0.018=1.913=191.3_.
  • Considering that  p3  is a bound for a probability,  p3=1.913  is only a trivial bound.
  • For  σ=0.5,  on the other hand,  β=e20.135.  Then holds:
p3=14β4+β8=143.35104+1.1107=0.47%_.

A comparison with subtask  (2)  shows that in the present example the Bhattacharyya Bound  p3  is above the  "Union Bound"  p1  by a factor 

(0.47102)/(0.044102)>10.
  • The reason for this large deviation is the Chernoff-Rubin bound,  which is well above the  Q function.
  • In  "Exercise 1.16Z",  the deviation between  QCR  and  Q(x)  is also calculated quantitatively:
QCR(x)/Q(x)2.5xQCR(x=4)/Q(x=4)10.