Exercise 2.3: Reducible and Irreducible Polynomials
Important prerequisites for understanding channel coding are knowledge of polynomial properties. In this exercise we consider polynomials of the form
- $$a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m} \hspace{0.05cm},$$
where for the coefficients $a_i ∈ {\rm GF}(2) = \{0, \, 1\}$ holds $(0 ≤ i ≤ m)$ and the highest coefficient is always assumed to $a_m = 1$ . One refers to $m$ as the degree of the polynomial. Adjacent are ten polynomials where the polynomial degree is either $m = 2$ (red font), $m = 3$ (blue font) or $m = 4$ (green font).
A polynomial $a(x)$ is called reducible if it can be represented as the product of two polynomials $p(x)$ and $q(x)$ each of lower degree:
- $$a(x) = p(x) \cdot q(x)$$
If this is not possible, that is, if for the polynomial
- $$a(x) = p(x) \cdot q(x) + r(x)$$
with a residual polynomial $r(x) ≠ 0$ holds, then the polynomial is called irreducible. Such irreducible polynomials are of special importance for the description of error correction methods.
The proof that a polynomial $a(x)$ of degree $m$ is irreducible requires several polynomial divisions $a(x)/q(x)$, where the degree of the respective divisor polynomial $q(x)$ is always smaller than $m$. Only if all these modulo $2$ divisions always yield a remainder $r(x) ≠ 0$ is it proved that $a(x)$ is indeed an irreducible polynomial.
This exact proof is very complex. Necessary conditions for $a(x)$ to be an irreducible polynomial at all are the two conditions (in nonbinary approach "$x=1$" would have to be replaced by "$x≠0$"):
- $a(x = 0) = 1$,
- $a(x = 1) = 1$.
Otherwise, one could write for the polynomial under investigation:
- $$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm bzw.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$
The above conditions are necessary, but not sufficient, as the following example shows:
- $$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1 \hspace{0.05cm}.$$
Nevertheless, this polynomial is reducible:
- $$a(x) = (x^3 + x +1)(x^2 + x +1) \hspace{0.05cm}.$$
Hints:
- This exercise belongs to the chapter "Extension field".
Questions
Musterlösung
- mit $a_m = 1$
- und gegebenen Koeffizienten $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$ (jeweils $0$ oder $1$)
ist dann irreduzibel, wenn es kein einziges Polynom $q(x)$ gibt, so dass die Modulo–$2$–Division $a(x)/q(x)$ keinen Rest ergibt. Der Grad aller zu betrachtenden Teilerpolynome $q(x)$ ist mindestens $1$ und höchstens $m-1$.
- Für $m = 2$ sind zwei Polynomdivisionen $a(x)/q_i(x)$ erforderlich, nämlich mit
- $$q_1(x) = x \hspace{0.5cm}{\rm und}\hspace{0.5cm}q_2(x) = x+1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2} \hspace{0.05cm}.$$
- Für $m = 3$ gibt es schon $N_{\rm D} \ \underline{= 6}$ Teilerpolynome, nämlich neben $q_1(x) = x$ und $q_2(x) = x + 1$ noch
- $$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm} q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
- Für $m = 4$ müssen außer $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$ auch noch alle möglichen Teilerpolynome mit Grad $m = 3$ berücksichtigt werden, also:
- $$q_i(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\} \hspace{0.05cm}.$$
- Für den Index gilt dabei $7 ≤ i ≤ 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.
(2) Für das erste Polynom gilt: $a_1(x = 0) = 0$. Deshalb ist dieses Polynom reduzibel: $a_1(x) = x \cdot (x + 1)$.
Dagegen gilt für das zweite Polynom:
- $$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1 \hspace{0.05cm}.$$
Diese notwendige, aber nicht hinreichende Eigenschaft zeigt, dass $a_2(x)$ irreduzibel sein könnte. Der endgültige Beweis ergibt sich erst durch zwei Modulo–2–Divisionen:
- $a_2(x)$ geteilt durch $x$ liefert $x + 1$, Rest $r(x) = 1$,
- $a_2(x)$ geteilt durch $x + 1$ liefert $x$, Rest $r(x) = 1$.
Richtig ist demnach der Lösungsvorschlag 2.
(3) Die drei ersten Polynome sind reduzibel, wie die folgenden Rechenergebnisse zeigen:
- $$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0 \hspace{0.05cm}.$$
Das hätte man auch durch Nachdenken herausfinden können:
- $$a_3(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
- $$a_4(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
- $$a_5(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$
Das Polynom $a_6(x)$ ist sowohl für $x = 0$ als auch für $x = 1$ ungleich $0$. Das heißt, dass
- "nichts dagegen spricht", dass $a_6(x)$ irreduzibel ist,
- die Division durch die irreduziblen Grad–1–Polynome $x$ bzw. $x + 1$ nicht ohne Rest möglich ist.
Da aber auch die Division durch das einzige irreduzible Grad–2–Polynom einen Rest liefert, ist bewiesen, dass $a_6(x)$ ein irreduzibles Polynom ist:
- $$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$
Mit gleichem Rechengang kann auch gezeigt werden, dass $a_7(x)$ ebenfalls irreduzibel ist ⇒ Lösungsvorschläge 4 und 5.
(4) Aus $a_8(x + 1) = 0$ folgt die Reduzibilität von $a_8(x)$. Für die beiden anderen Polynome gilt dagegen:
- $$a_9(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1 \hspace{0.05cm},$$
- $$a_{10}(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1 \hspace{0.05cm}.$$
Beide könnten also irreduzibel sein. Der exakte Nachweis der Irreduzibilität ist aufwändiger:
- Man muss zur Überprüfung zwar nicht alle vier Divisorpolynome mit Grad $m = 2$ heranziehen, nämlich $x^2, \ x^2 + 1, \ x^2 + x + 1$, sondern es genügt die Division durch das einzige irreduzible Grad–2–Polynom. Man erhält hinsichtlich des Polynoms $a_9(x)$:
- $$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
Auch die Division durch die beiden irreduziblen Grad–3–Polynome liefert jeweils einen Rest:
- $$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
- $$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \hspace{0.05cm},\hspace{0.95cm}{\rm Rest}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
Betrachten wir schließlich noch das Polynom $a_{10}(x) = x^4 + x^2 + 1$. Hier gilt
- $$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
Daraus folgt: Nur das Polynom $a_9(x)$ ist irreduzibel ⇒ Lösungsvorschlag 2.