Exercise 2.11: Reed-Solomon Decoding according to "Erasures"

From LNTwww
Revision as of 15:43, 8 October 2022 by Guenter (talk | contribs)

${\rm GF}(2^3)$, represented as powers, polynomials and coefficient vectors

We consider here an encoding and decoding system corresponding to the  "graph"  in the theory section for this chapter. To be noted:

  • The Reed–Solomon code is given by the generator matrix  $\mathbf{G}$  and the parity-check matrix  $\mathbf{H}$  where all elements are from the Galois field  $\rm GF(2^3) \ \backslash \ \{0\}$ :
$${ \boldsymbol{\rm G}} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},$$
$${ \boldsymbol{\rm H}} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
  • All code symbols  $c_i ∈ \{0, \, 1, \, \alpha, \, \alpha^2, \, \alpha^3, \, \alpha^4, \, \alpha^5, \, \alpha^6\}$  are represented by  $m = 3$  bits and transmitted via the erasure channel (highlighted in green in the graphic)  $(m$ BEC$)$ . A code symbol is already marked as an erasure (Erasure )  $\rm E$  if one of the three associated bits is uncertain.
  • The code word finder  (CWF) has the exercise of generating the regenerated codeword  $\underline{z}$  from the partially erased received word  $\underline{y}$ . It must be ensured that the result  $\underline{z}$  is indeed a valid Reed–Solomon codeword.
  • If the received word  $\underline{y}$  contains too many erasures, the decoder outputs a message of the type "symbol cannot be decoded".  So no attempt is made to estimate the codeword. If  $\underline{z}$  is output, this is also correct:  $\underline{z} = \underline{c}$.
  • The sought information value  $\underline{v} = \underline{u}$  results from the inverse coder function  $\underline{v} = {\rm enc}^{-1}(\underline{z})$. With the generator matrix  $\mathbf{G}$  this can be realized as follows:
$$\underline{c} = {\rm enc}(\underline{u}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u} \cdot {\boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{z} = {\rm enc}(\underline{v}) = \underline{v} \cdot {\boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{v} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm enc}^{-1}(\underline{z}) = \underline{z} \cdot {\boldsymbol{\rm G}}^{\rm T}\hspace{0.05cm}.$$





Hints:


Questions

1

Specify the code parameters of the present Reed–Solomon code.

$n \ = \ $

$k \ = \ $

$d_{\rm min} \ = \ $

2

Can the received vector  $\underline{y} = (0, \, 0, \, 0,\, 0, \, 0, \, 0, \, {\rm E})$  be decoded??

YES.
NO.

3

Can the received vector  $\underline{y} = (\rm E, \, E, \, 1, \, 1, \, 1, \, 1, \, 1)$  be decoded?

YES.
NO.

4

What is the result of decoding  $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, 0)$?

$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0$.
$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3$.
$z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3$.
The decoding does not lead to any result.

5

What is the result of decoding  $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, E)$?

$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0, \ z_6 = 1$.
$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3, \ z_6 = 1$.
$z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3, \ z_6 = 1$.
The decoding does not lead to any result.


Solution

(1)  The number of columns of the parity-check matrix $\mathbf{H}$ indicates the code length: $n \ \underline{= 7}$.

  • The same result is obtained if we assume the order $q = 8$ of the Galois field. For the Reed–Solomon codes $n = q - 1$ is valid.
  • The number of rows of the parity-check matrix is equal to $n - k = 3 \ \Rightarrow \ k \ \underline{= 4}$.
  • Of all Reed–Solomon codes, the "Singleton bound" is satisfied   ⇒   $d_{\rm min} = n - k + 1 \ \underline{= 4}$.
  • Thus, it is the Reed–Solomon code $(7, \, 4, \, 4)_8$.


(2)  Decoding is certainly possible as long as the number $e$ of extinctions is smaller than the minimum distance $d_{\rm min}$. This condition is fulfilled here  ⇒  YES.

  • Since the null word is allowed in all RS codes and every other codeword contains at least four symbols not equal to "$0$", it is already certain without calculation that the null word was sent.
  • The formal calculation confirms this result:
$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \begin{pmatrix} \alpha^6\\ \alpha^{5}\\ \alpha^{4} \end{pmatrix} \cdot z_6 = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_6 = 0 \hspace{0.05cm}. $$


(3)  Again  $e = 2$  is smaller than  $d_{\rm min} = 4$   ⇒   YES.

  • Since $(1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$ is also a valid codeword, we expect $z_0 = 1$ und $z_1 = 1$ in the formal verification.
$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \cdot\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}= \begin{pmatrix} \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6\\ \alpha^4 + \alpha^6 + \alpha^1 + \alpha^{3} + \alpha^{5}\\ \alpha^6 + \alpha^2 + \alpha^{5} + \alpha^{1} + \alpha^{4} \end{pmatrix}$$
$$\Rightarrow \hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \begin{pmatrix} (100) + (011) + (110) + (111) + (101)\\ (110) + (101) + (010) + (011) + (111)\\ (101) + (100) + (111) + (010) + (110) \end{pmatrix} = \begin{pmatrix} (011)\\ (101)\\ (010) \end{pmatrix} = \begin{pmatrix} \alpha^3\\ \alpha^6\\ \alpha^1 \end{pmatrix} \hspace{0.05cm}. $$
  • In this calculation, we varied between the polynomial representation and the coefficient representation on the data side. Thus the system of equations reads:
$$\begin{pmatrix} (001) + (010) \\ (001) + (100)\\ (001) + (011) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1 \end{pmatrix} = \begin{pmatrix} (011)\\ (101)\\ (010) \end{pmatrix} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} \begin{pmatrix} (001) + (010) \\ (001) + (100)\\ (000) + (111) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1 \end{pmatrix} = \begin{pmatrix} (011)\\ (101)\\ (111) \end{pmatrix}\hspace{0.05cm}.$$
  • The second form is obtained by substituting the third row from the modulo $2$ sum of rows 2 and 3.
  • From the last row now follows $z_1 = 1$ and the rows 1 and 2 are then:
$$(1)\hspace{0.3cm}z_0 + (010) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (011)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm},$$
$$(2)\hspace{0.3cm}z_0 + (100) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (101)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm}. $$
  • Both equations lead to the same result $z_0 = 1, \ z_1 = 1$. The decoding is successful.


(4)  Decoding happens on following steps:

$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \cdot\begin{pmatrix} 0\\ 1\\ \alpha\\ 0 \end{pmatrix}= \begin{pmatrix} \alpha^4 + \alpha^6\\ \alpha^1 + \alpha^{4}\\ \alpha^5 + \alpha^2 \end{pmatrix}= \begin{pmatrix} (110) + (101)\\ (010) + (110)\\ (111) + (100) \end{pmatrix} = \begin{pmatrix} (011)\\ (100)\\ (011) \end{pmatrix} \hspace{0.05cm},$$
$${ \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} 1 & \alpha^1 & \alpha^2\\ 1 & \alpha^2 & \alpha^4\\ 1 & \alpha^3 & \alpha^6 \end{pmatrix} \cdot\begin{pmatrix} z_0\\ z_1\\ z_2 \end{pmatrix}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \begin{pmatrix} (001) &(010) &(100)\\ (001) &(100) &(110)\\ (001) &(011) &(101) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1\\ z_2 \end{pmatrix}= \begin{pmatrix} (011)\\ (100)\\ (011) \end{pmatrix} \hspace{0.05cm}. $$
  • We now replace row 2 with the modulo $2$ sum of rows 1 and 2, and row 3 with the modulo $2$ sum of rows 1 and 3:
$$\begin{pmatrix} (001) &(010) &(100)\\ (000) &(110) &(010)\\ (000) &(001) &(001) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1\\ z_2 \end{pmatrix}= \begin{pmatrix} (011)\\ (111)\\ (000) \end{pmatrix} \hspace{0.05cm}.$$
  • From the last row follows $z_1 + z_2 = 0 \ \Rightarrow \ z_2 = z_1$. Substituting into the second row of this matrix equation we get:
$$\big[(110) + (010)\big] \cdot z_1 = (100) \cdot z_1 = (111) \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \alpha^2 \cdot z_1 = \alpha^5\hspace{0.2cm}\Rightarrow \hspace{0.2cm} z_1 \hspace{0.1cm}\underline{= \alpha^3}\hspace{0.05cm},\hspace{0.2cm}z_2 \hspace{0.1cm}\underline{= \alpha^3} \hspace{0.05cm}. $$
  • With this result follows from the first matrix row:
$$z_0 + \big[(010) + (100)\big] \cdot z_1 = z_0 + (110) \cdot z_1 = (011) $$
$$\Rightarrow \hspace{0.2cm} z_0 + \alpha^4 \cdot \alpha^3 = z_0 + 1 = \alpha^3 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} z_0 = \alpha^3 + 1 = ( \alpha + 1) +1\hspace{0.15cm} \underline{= \alpha}\hspace{0.05cm}.$$
  • The correct solution is therefore proposed solution 2.


(5)  Correct is proposed solution 4.   Reason:

  • Four information symbols cannot be obtained from the three known symbols $0, \, 1, \, \alpha$.
  • The $\mathbf{H}$ matrix of this $(7, \, 4, \, 4)_8$ code has exactly $n - k = 3$ rows.
  • This also means that you have only three equations. But you would need four equations for the unknowns $z_0, \ z_1, \ z_2$ and $z_6$.