Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes

From LNTwww
Revision as of 15:58, 18 November 2022 by Guenter (talk | contribs)

Overall system model,  given for this exercise

The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.  We assume here the following model:

  • The information sequence  $\underline{u}$  is converted into the code sequence  $\underline{x}$  by a convolutional code.
  • It is valid  $u_i ∈ \{0, \, 1\}$.  In contrast,  the code symbols are represented bipolar   ⇒   $x_i ∈ \{–1, \, +1\}$.
  • Let the channel be given by the models  $\text{BSC}$    ⇒   received values  $y_i ∈ \{–1, \, +1\}$  or  $\text{AWGN}$   ⇒ $y_i$  real-valued.
  • Given a received sequence  $\underline{y}$  the Viterbi algorithm decides for the sequence  $\underline{z}$  according to
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  • As a further result,  the Viterbi algorithm additionally outputs the sequence  $\underline{v}$  as an estimate for the information sequence  $\underline{u}$.


In this exercise,  you should determinethe relationship between the  $\text{Hamming distance}$  $d_{\rm H}(\underline{x}, \, \underline{y})$  and the  $\text{Euclidean distance}$

$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.$$

Then,  the above maximum likelihood criterion is to be formulated with

  • the Hamming distance  $d_{\rm H}(\underline{x}, \, \underline{y})$,
  • the Euclidean distance  $d_{\rm E}(\underline{x}, \, \underline{y})$,  and





Hints:

  • For simplicity,  "tilde"  and  "apostrophe"  are omitted.
  • For more information on this topic,  see the following sections in this book:


Questions

1

How are   $d_{\rm H}(\underline{x}, \, \underline{y})$   and   $d_{\rm E}(\underline{x}, \, \underline{y})$   related in the BSC model?

  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$  is valid.
  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$  is valid.
  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$  is valid.

2

Which of the equations describe the maximum likelihood decoding in the BSC model?  The minimization/maximization refers alwaysto all  $\underline{x} ∈\mathcal{ C}$.

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,

3

Which equation describes the maximum likelihood decision in the BSC model?

$\underline{z} = \arg \min 〈 \underline{x} \cdot \underline{y} 〉$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.

4

What equations apply to the maximum likelihood decision in the AWGN model?

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.


Solution

(1)  Correct is the proposed solution 3:

  • Let the two binary sequences be $\underline{x}$ and $\underline{y}$ with $x_i ∈ \{-1, \, +1\}, \ y_i ∈ \{-1, \, +1\}$. Let the sequence length be $L$ in each case.
  • The Hamming distance $d_{\rm H}(\underline{x}, \, \underline{y})$ gives the number of bits in which $\underline{x}$ and $\underline{y}$ differ, for which thus $x_i \, - y_i = ±2$   ⇒   $ (x_i \, - y_i)^2 = 4$ holds.
  • Equal symbols $(x_i = y_i)$ do not contribute to the Hamming–distance and give $(x_i \, – y_i)^2 = 0$. According to the solution 3, we can therefore write:
$$ d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$


(2)  All proposed solutions are correct:

  • In the BSC model, it is common practice to select the code word $\underline{x}$ with the smallest Hamming distance $d_{\rm H}(\underline{x}, \, \underline{y})$ for the given received vector $\underline{y}$:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
  • But according to the subtask (1) also applies:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.$$
  • The factor $1/4$ does not matter for the minimization. Since $d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0$, it does not matter whether the minimization is done with respect to $d_{\rm E}(\underline{x}, \, \underline{y})$ or $d_{\rm E}^2(\underline{x}, \, \underline{y})$.


(3)  Correct is the proposed solution 2:

  • The square of the Euclidean distance can be expressed as follows:
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.$$
  • The first two summands are each equal to $L$ and need not be considered for minimization.
  • For the last expression in this equation, $–2 \cdot 〈 \underline{x}, \, \underline{y} 〉$ can be written.
  • Due to the negative sign, minimization becomes maximization   ⇒   answer 2.


(4)  Correct are proposed solutions 2 and 3:

  • For the AWGN channel, unlike the BSC, no Hamming distance can be specified.
  • Based on the equation
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
the same statements apply for the first and last summands as for the BSC model – see subtask (3).
  • For the middle summand, $y_i = x_i + n_i$ and $x_i ∈ \{–1, \, +1\}$ hold:
$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
  • The first summand again gives $L$, the second is proportional to the noise power, and the last term vanishes since $\underline{x}$ and $\underline{n}$ are uncorrelated.
  • So for minimizing $d_{\rm E}(\underline{x}, \, \underline{y})$, the sum over $y_i^2$ need not be considered since there is no relation to the code sequences $\underline{x}$.