Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

The Basics of Product Codes

From LNTwww
< Channel Coding
Revision as of 15:59, 6 December 2022 by Guenter (talk | contribs)

Basic structure of a product code


The graphic shows the principle structure of  »product codes«,  which were already introduced in 1954 by  Peter Elias

  • The  two-dimensional product code  C=C1×C2  shown here is based on the two linear and binary block codes with parameters  (n1, k1)  and  (n2, k2) respectively.
  • The code word length is  n=n1n2.


The  n  encoded bits can be grouped as follows:

Basic structure of a product code
  • The  k=k1k2  information bits are arranged in the  k2×k1 matrix  U.
  • The code rate is equal to the product of the code rates of the base codes:
R=k/n=(k1/n1)(k2/n2)=R1R2.
  • The upper right matrix  P(1)  with dimension  k2×m1  contains the parity bits with respect to the code  C1.
  • In each of the  k2  rows,  m1=n1k1  check bits are added to the  k1  information bits as described in an earlier chapter using the example of  "Hamming codes" .
  • The lower left matrix  P(2)  of dimension  m2×k1  contains the check bits for the second component code  C2.  Here the encoding  (and also the decoding)  is done line by line:   In each of the  k1  columns,  the  k2  information bits are still supplemented by  m2=n2k2  check bits.
  • The  m2×m1–matrix  P(12)  on the bottom right is called  "checks–on–checks".  Here the two previously generated parity matrices  P(1)  and  P(2)  are linked according to the parity-check equations.

Conclusions:  All product codes  according to the above graph have the following properties:

  • For linear component codes  C1  and  C2  the product code  C=C1×C2  is also linear.
  • Each row of  C  returns a code word of  C1  and each column returns a code word of  C2.
  • The sum of two rows again gives a code word of  C1 due to linearity.
  • Also,  the sum of two columns gives a valid code word of  C2.
  • Each product code also includes the  "zero word"  0_  (a vector of  n  "zeros").
  • The minimum distance of  C  is  dmin=d1d2,  where  di  indicates the minimum distance of  Ci 

Iterative syndrome decoding of product codes


We now consider the case where a product code with matrix  X  is transmitted over a binary channel. 

  • Let the received matrix  Y=X+E, where  E  denotes the  "error matrix".
  • Let all elements of the matrices  X, E  and  Y  be binary,  that is  0  or  1.


For the decoding of the two component codes the syndrome decoding according to the chapter  "Decoding linear block codes"  is suitable. 

In the two-dimensional case this means:

  1. One first decodes the  n2  rows of the received matrix  Y,  based on the parity-check matrix  H1  of the component code  C1
    Syndrome decoding is one way to do this.
  2. For this one forms in each case the so-called  "syndrome"   s_=y_HT1,  where the vector   y_   of length  n1  indicates the current row of  Y  and 
    "T"  stands for "transposed".
  3. Correspondingly to the calculated  s_μ   (with  0μ<2n1k1)   one finds in a prepared syndrome table the corresponding probable error pattern  e_=e_μ.
  4. If there are only a few errors within the row,  then   y_+e_   matches the sent row vector  x_
  5. However,  if too many errors have occurred,  then incorrect corrections will occur.
  6. Afterwards one decodes the  n1  columns of the  (corrected)  received matrix  Y,  this time based on the  (transposed)  parity-check matrix  HT2  of the component code  C2.
  7. For this,  one forms the syndrome   s_=y_HT2,  where the vector  y_  of length  n2  denotes the considered column of  Y  .
  8. From a second syndrome table  (valid for code  C2)  we find for the computed  s_μ  (with  0μ<2n2k2)  the probable error pattern e_=e_μ of the edited column.
  9. After correcting all columns,  the matrix  Y  is present.  Now one can do another row and then a column decoding   ⇒   second iteration,  and so on,  and so forth.

Example 1:  To illustrate the decoding algorithm,  we again consider the  (42,12)  product code,  based on

  • the Hamming code  HC (7, 4, 3)   ⇒   code  C1,
  • the truncated Hamming code  HC (6, 3, 3)   ⇒   code  C2.


Syndrome decoding of the  (42,12)  product code
Syndrome table for code C1
Syndrome table for the code C2

The left graph shows the received matrix  Y.  For display reasons, 

  • the code matrix  X  was chosen to be a  6×7 zero matrix, 
  • so that the nine  "ones"  in  Y  represent transmission errors




The  row-by-row syndrome decoding  is done via the syndrome  s_=y_HT1  with

\boldsymbol{\rm H}_1^{\rm T} = \begin{pmatrix} 1 &0 &1 \\ 1 &1 &0 \\ 0 &1 &1 \\ 1 &1 &1 \\ 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{pmatrix} \hspace{0.05cm}.


In particular:

  • Row 1  ⇒  Single error correction is successful (also in rows 3,  4 and 6):
\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T} \hspace{-0.05cm}= \left ( 0, \hspace{0.03cm} 1, \hspace{0.03cm}1 \right ) = \underline{s}_3
\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_3 = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{0.05cm}.
  • Row 2  (contains two errors)   ⇒   Error correction concerning bit 5:
\underline{s} = \left ( 1, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T} \hspace{-0.05cm}= \left ( 1, \hspace{0.03cm} 0, \hspace{0.03cm}0 \right ) = \underline{s}_4
\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_4 = \left ( 1, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}1 \right ) \hspace{0.05cm}.
  • Row 5  (also contains two errors)  ⇒  Error correction concerning bit 3:
\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T} \hspace{-0.05cm}= \left ( 0, \hspace{0.03cm} 1, \hspace{0.03cm}1 \right ) = \underline{s}_3
\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_3 = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{0.05cm}.

The column by column syndrome decoding removes all single errors in columns  1,  2,  3,  4  and  7.

  • Column 5  (contains two errors)   ⇒   Error correction concerning bit 4:
\underline{s} = \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_2^{\rm T} \hspace{-0.05cm}= \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm} \begin{pmatrix} 1 &1 &0 \\ 1 &0 &1 \\ 0 &1 &1 \\ 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{pmatrix} = \left ( 1, \hspace{0.03cm} 0, \hspace{0.03cm}0 \right ) = \underline{s}_4
\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_4 = \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{0.05cm}.

The remaining three errors are corrected by decoding the  second iteration loop  line by line.

Whether all errors of a block are correctable depends on the error pattern. Here we refer to the  "Exercise 4.7"


Performance of product codes


The 1954 introduced  product codes  were the first codes, which were based on recursive construction rules and thus in principle suitable for iterative decoding. The inventor Peter Elias did not comment on this, but in the last twenty years this aspect and the simultaneous availability of fast processors have contributed to the fact that in the meantime product codes are also used in real communication systems, e.g.

  • in error protection of storage media, and
  • in very high data rate fiber optic systems.



Usually one uses very long product codes  (large  n = n_1 \cdot n_2)  with the following consequence:

  • Applicable, on the other hand, even with large  n  is the  "iterative symbol-wise MAP decoding". The exchange of extrinsic and apriori–information happens here between the two component codes. More details on this can be found in  [Liv15][1].


The graph shows for a  (1024, 676) product code, based on the  extended Hamming code  {\rm eHC} \ (32, 26)  as component codes,

  • on the left, the AWGN bit error probability as a function of iterations  (I)
  • right the error probability of the blocks (or code words).


Bit and block error probability of a  (1024, 676) product code at AWGN

Here are some additional remarks:

  • The code rate is  R = R_1 \cdot R_2 = 0.66, giving the Shannon bound to  10 \cdot {\rm lg} \, (E_{\rm B}/N_0) \approx 1 \ \rm dB  results.
  • In the left graph you can see the influence of the iterations. At the transition from  I = 1  to  I=2  one gains approx.  2 \ \rm dB (at the bit error rate  10^{-5})  and with  I = 10  another \rm dB. Further iterations are not worthwhile.
{\rm Pr(Truncated\hspace{0.15cm}Union\hspace{0.15cm} Bound)}= W_{d_{\rm min}} \cdot {\rm Q} \left ( \sqrt{d_{\rm min} \cdot {2R \cdot E_{\rm B}}/{N_0}} \right ) \hspace{0.05cm}.
  • The minimum distance is  d_{\rm min} = d_1 \cdot d_2 = 4 \cdot 4 = 16. With the weight function of the  {\rm eHC} \ (32, 26),
W_{\rm eHC(32,\hspace{0.08cm}26)}(X) = 1 + 1240 \cdot X^{4} + 27776 \cdot X^{6}+ 330460 \cdot X^{8} + ...\hspace{0.05cm} + X^{32},
is obtained for the product code  W_{d, \cdot min} = 1240^2 = 15\hspace{0.05cm}376\hspace{0.05cm}000. This gives the error probability shown in the graph on the right.

Exercises for the chapter


"Exercise 4.6: Product Code Generation"

"Exercise 4.6Z: Basics of Product Codes"

"Exercise 4.7: Product Code Decoding"

"Exercise 4.7Z: Principle of Syndrome Decoding"

References

  1. Liva, G.: Channels Codes for Iterative Decoding. Lecture manuscript, Department of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.