Exercise 4.11Z: Code Rate from the Parity-check Matrix

From LNTwww
Revision as of 11:39, 17 December 2022 by Guenter (talk | contribs)

Given parity-check matrices

In this exercise,  the code rates of the codes  $\mathcal {C}_1, \, \mathcal {C}_2, \, \mathcal {C}_3$  and  $\mathcal {C}_4$  are to be determined,  where the codes are given by their parity-check matrices alone.  A lower bound on the code rate  $R$  reads:

$$R \ge 1 - \frac{{\rm E}[w_{\rm C}]}{{\rm E}[w_{\rm R}]} \hspace{0.05cm}.$$

If the  $m$  parity-check equations of all matrix rows are linearly independent,  then the equal sign in the above inequality holds.

Used here is the following nomenclature:

  • $w_{\rm R}(j)$  with  $1 ≤ j ≤ m$  being the  "Hamming weight"  of  $j$th  row of  $\mathbf{H}$ .  By expectation value formation results:
$${\rm E}[w_{\rm R}] =\frac{1}{m} \cdot \sum_{j = 1}^{m} w_{\rm R}(j)\hspace{0.05cm}.$$
  • Accordingly,  $w_{\rm C}(i)$  with  $1 ≤ i ≤ n$  gives the Hamming weight of  $i$th  column of  $\mathbf{H}$  with expected value
$${\rm E}[w_{\rm C}] =\frac{1}{n} \cdot \sum_{i = 1}^{n} w_{\rm C}(i)\hspace{0.05cm}.$$




Hints:



Questions

1

$\mathbf{H}_1$  describes a systematic code.  What are its parameters?

$n \hspace{0.27cm} = \ $

$k \hspace{0.3cm} = \ $

$m \hspace{0.15cm} = \ $

2

What is the code rate of the code  $\mathcal {C}_1$  with the parity-check matrix  $\mathbf{H}_1$?

$R \ = \ $

3

What is the code rate of the code  $\mathcal {C}_2$  with the parity-check matrix  $\mathbf{H}_2$?

$R \ = \ $

4

What is the code rate of the code  $\mathcal {C}_3$  with the parity-check matrix  $\mathbf{H}_3$?

$R \ = \ $

5

What is the code rate of the code  $\mathcal {C}_4$  with the parity-check matrix  $\mathbf{H}_4$?

$R \ = \ $


Solution

(1)  The matrix $\mathbf{H}_1$ ends with a $3 × 3$–diagonal matrix.

  • This is the characteristic of a systematic code with $\underline{m = 3}$ parity-check equations.
  • The code length is $\underline{n = 7}$.
  • Thus, a codeword contains $\underline{k = 4}$ information bits.


Note: This is the "systematic (7, 4, 3)–Hamming code".


(2)  The code rate of the (7, 4, 3)–Hamming–code is $\underline{R = 4/7 = 0.571}$.

  • The Hamming weight for all $m = 3$ rows is $w_{\rm Z} = 4$ and for the mean Hamming–weight over all columns holds:
$${\rm E}[w_{\rm S}] =\frac{1}{n} \cdot \sum_{j = 1}^{ n} w_{\rm S}(j) = 1/7 \cdot [2 + 3 + 2+2 + 1+1 +1] = 12/7 \hspace{0.05cm}.$$
  • This applies to the specified lower bound of the code rate:
$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{w_{\rm Z}} = 1 - \frac{12/7}{4}\hspace{0.15cm} \underline{= 4/7 \approx 0.571}\hspace{0.05cm}.$$
  • This means: the actual code rate is equal to the lower bound   ⇒   the $m = 3$ parity-check equations of $\mathbf{H}_1$ are linearly independent.


(3)  The first row of $\mathbf{H}_2$ is the sum of the first row $(z_1)$ and the second row $(z_2)$ of $\mathbf{H}_1$.

  • The second row is equal to $z_2 + z_3$ and the third row is $z_1 + z_3$.
  • This is the identical code  ⇒  rate $\underline{R = 4/7 = 0.571}$.
  • Further,  $w_{\rm Z} = 4$  and  ${\rm E}[w_{\rm S}] = 1/7 \cdot [0 + 6 \cdot 2] = 12/7$.


(4)  For this code with  $n = 7$  (column count) and  $m = 4$  (row count) holds:

$$w_{\rm Z} = 4\hspace{0.05cm},\hspace{0.3cm} {\rm E}[w_{\rm S}] =\frac{1}{n} \cdot \sum_{j = 1}^{ n}w_{\rm S}(j) = 1/7 \cdot [3 + 1 + 2 +3+2 + 2+3] = 16/7\hspace{0.3cm} \Rightarrow \hspace{0.3cm} R \ge 1 - \frac{16/7}{4}= 3/7 \hspace{0.05cm}.$$

The equal sign would only apply to linearly independent parity-check equations, which is not the case here:

  • The third row of $\mathbf{H}_3$ was taken from $\mathbf{H}_1$.
  • If one deletes this row, $\mathbf{H}_3 = \mathbf{H}_2$ and therefore also holds: $\ \underline{R = 4/7 = 0.571}$.


(5)  Here  $n = 7$  and  $m = 4$, as well as

$${\rm E}[w_{\rm S}] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1/8 \cdot [4 + 3 + 4 + 3 + 3+2 + 2+2] = 23/8\hspace{0.05cm},\hspace{0.8cm} {\rm E}[w_{\rm Z}] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1/4 \cdot [8 + 5 + 5+5] = 23/4$$
$$\Rightarrow \hspace{0.3cm}R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]} = 1 - \frac{23/8}{23/4} = 1/2 \hspace{0.05cm}.$$
  • Since all four equations are linearly independent, the code rate is equal to the lower bound: $\underline{R = 1/2}$.


Hint:   This is the "extended (8, 4, 4) Hamming code".