Contents
Wahrscheinlichkeitsdichte- und Verteilungsfunktion (1)
Alle bisherigen Aussagen von Kapitel 4 gelten allgemein. Für den Sonderfall Gaußscher Zufallsgrößen – der Name geht auf den Wissenschaftler Carl Friedrich Gauß zurück – können wir weiterhin vermerken:
- Die Verbundwahrscheinlichkeitsdichtefunktion einer Gaußschen 2D-Zufallsgröße $(x, y)$ mit den Mittelwerten $m_x =$ 0 und $m_y =$ 0 sowie dem Korrelationskoeffizienten $ρ_{xy}$ lautet:
$$f_{\rm xy}(x,y)=\frac{\rm 1}{\rm 2\it\pi \sigma_x \sigma_y \sqrt{\rm 1-\rho_{\it xy}^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\it\rho_{xy}^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_x^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_y^{\rm 2}}-\rm 2\it\rho_{xy}\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_y}\rm ) \rm \Bigg].$$
- Ersetzt man in dieser Gleichung $x$ durch $(x – m_x)$ sowie $y$ durch $(y – m_y)$, so ergibt sich die allgemeinere WDF einer zweidimensionalen Gaußschen Zufallsgröße mit Mittelwert.
- Die beiden Randwahrscheinlichkeitsdichtefunktionen $f_{\rm x}(x)$ und $f_{\rm y}(y)$ sind in diesem Fall ebenfalls gaußförmig und weisen die Streuungen $σ_x$ bzw. $σ_y$ auf.
- Bei unkorrelierten Komponenten $x$ und $y$ muss in obiger Gleichung $ρ_{xy} =$ 0 eingesetzt werden, und man erhält dann das Ergebnis:
$$f_{\rm xy}(x,y)=\frac{1}{\sqrt{2\pi}\cdot\sigma_{x}} \cdot\rm e^{-\it {x^{\rm 2}}/{\rm (}{\rm 2\it\sigma_{x}^{\rm 2}} {\rm )}} \cdot\frac{1}{\sqrt{2\pi}\cdot\sigma_{\it y}}\cdot e^{-\it {y^{\rm 2}}/{\rm (}{\rm 2\it\sigma_{y}^{\rm 2}} {\rm )}} = \it f_{\rm x} \rm ( \it x \rm ) \cdot \it f_{\rm y} \rm ( \it y \rm ) .$$
Resümee:
Im Sonderfall einer 2D-Zufallsgröße mit Gaußscher WDF $f_{\rm xy}(x, y)$ folgt aus der Unkorreliertheit auch direkt die statistische Unabhängigkeit: $$f_{\rm xy}(x,y)= f_{\rm x}(x) \cdot f_{\rm y}(y) . $$
Bei keiner anderen WDF kann aus der Unkorreliertheit auf die statistische Unabhängigkeit geschlossen werden. Man kann aber stets ⇒ für jede beliebige 2D–WDF $f_{\rm xy}(x, y)$ von der statistischen Unabhängigkeit auf die Unkorreliertheit schließen, weil:
- Sind zwei Zufallsgrößen $x$ und $y$ völlig voneinander (statistisch) unabhängig, so gibt es zwischen ihnen natürlich auch keine linearen Abhängigkeiten.
Wahrscheinlichkeitsdichte- und Verteilungsfunktion (2)
Das Bild zeigt
- die Wahrscheinlichkeitsdichtefunktion (links) und
- Verteilungsfunktion (rechts)
einer zweidimensionalen Gaußschen Zufallsgröße $(x, y)$ mit relativ starker positiver Korrelation der Einzelkomponenten: $ρ_{xy} =$ 0.8. Wie bei den bisherigen Bildern in diesem Kapitel ist die 2D–Zufallsgröße in $x$–Richtung weiter ausgedehnt als in $y$–Richtung: $σ_x = 2 · σ_y$.
Diese Darstellungen können wie folgt interpretiert werden:
- Die WDF ist vergleichbar mit einem Bergkamm, der sich von links unten nach rechts oben erstreckt.
- Das Maximum liegt bei $m_x =$ 0 und $m_y =$ 0. Das bedeutet, dass die die 2D–Zufallsgröße mittelwertfrei ist.
- Die zweidimensionale VTF als das Integral in zwei Richtungen über die WDF steigt von links unten nach rechts oben von 0 auf 1 kontinuierlich an.
Das nachfolgende Interaktionsmodul erlaubt die Darstellung der zweidimensionalen WDF und der zweidimensionalen VTF für beliebige Werte von $σ_x, σ_y$ und $ρ_{xy}$:
WDF/VTF bei 2D-Gaußgrößen
Höhenlinien bei unkorrelierten Zufallsgrößen
Aus der Bedingungsgleichung $f_{\rm xy}(x, y) =$ const. können die Höhenlinien der WDF berechnet werden. Sind die Komponenten $x$ und $y$ unkorreliert $(ρ_{xy} =$ 0), so erhält man:
$$\frac{x^{\rm 2}}{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{y}^{\rm 2}} =\rm const.$$
Die Höhenlinien beschreiben in diesem Fall folgende Figuren:
- Kreise (falls $σ_x = σ_y$, grüne Kurve), oder
- Ellipsen (für $σ_x ≠ σ_y$, blaue Kurve) in Ausrichtung der beiden Achsen.
Weitere Informationen zu dieser Thematik mit Signalbeispielen bietet das folgende Lernvideo: Gaußsche Zufallsgrößen ohne statistische Bindungen (Dauer 2:35).
Sie sehen hier einen Bildschirmabzug dieses Multimedia–Moduls.
Höhenlinien bei korrelierten Zufallsgrößen
Bei korrelierten Komponenten $(ρ_{xy}$ ≠ 0) sind die Höhenlinien der WDF stets elliptisch, also auch für den Sonderfall $σ_x = σ_y$. Hier lautet die Bedingungsgleichung $f_{\rm xy}(x, y) =$ const.: $$\frac{x^{\rm 2}}{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{y}^{\rm 2}}-\rm 2\cdot\rho_{xy}\cdot\frac{x\cdot y}{\sigma_x\cdot \sigma_y}=\rm const.$$ Das folgende Bild zeigt in hellerem Blau zwei Höhenlinien für unterschiedliche Parametersätze, jeweils mit $ρ_{xy}$ ≠ 0. Die Ellipsenhauptachse ist dunkelblau gestrichelt, und die Korrelationsachse $K(x)$ durchgehend rot eingezeichnet.
Anhand dieses Bildes sind folgende Aussagen möglich:
- Die Ellipsenform hängt außer vom Korrelationskoeffizienten $ρ_{xy}$ auch vom Verhältnis der beiden Streuungen $σ_x$ und $σ_y$ ab.
- Auch der Neigungswinkel α der Ellipsenhauptachse (gestrichelte Gerade) gegenüber der $x$-Achse hängt von diesen drei Parametern ab:
$$\alpha = \frac {1}{2} \cdot {\rm arctan } ( 2 \cdot \rho_{xy} \cdot \frac {\sigma_x \cdot \sigma_y}{\sigma_x^2 - \sigma_y^2}).$$
- Die Korrelationsgerade $y = K(x)$ einer Gaußschen 2D–Zufallsgröße liegt stets unterhalb der Ellipsenhauptachse.
- $K(x)$ kann auch aus dem Schnittpunkt der Höhenlinien und ihrer vertikalen Tangenten geometrisch konstruiert werden, wie in den obigen Skizzen in grüner Farbe angedeutet ist.
Die folgenden Lernvideos beschreiben die Eigenschaften Gaußscher Zufallsgrößen:
Gaußsche Zufallsgrößen ohne statistische Bindungen (Dauer 2:35),
Gaußsche Zufallsgrößen mit statistischen Bindungen (Dauer 3:05).
Drehung des Koordinatensystems (1)
Bei manchen Aufgabenstellungen ist es vorteilhaft, das Koordinatensystem zu drehen, wie in der nachfolgenden Grafik angedeutet:
- Das $(ξ, η)$-Koordinatensystem ist gegenüber dem ursprünglichen $(x, y)$-System um den Winkel $β$ gedreht.
- Dagegen bezeichnet $α$ den Winkel zwischen der Ellipsenhauptachse und der $x$–Achse.
Zwischen den Koordinaten der beiden Bezugssysteme bestehen folgende Zusammenhänge: $$\xi = \hspace{0.4cm} \cos (\beta) \cdot x + \sin (\beta) \cdot y \hspace{0.55cm}{\rm bzw. }\hspace{0.5cm} x = \cos (\beta) \cdot \xi - \sin (\beta) \cdot \eta ,$$ $$\eta = - \sin (\beta) \cdot x + \cos (\beta) \cdot y \hspace{0.5cm}{\rm bzw. }\hspace{0.5cm} y = \sin (\beta) \cdot \xi + \cos (\beta) \cdot \eta .$$
Ist $(x, y)$ eine Gaußsche 2D-Zufallsgröße, so ist die neue Zufallsgröße $(ξ, η)$ ebenfalls gaußverteilt.
Setzt man die obigen Gleichungen in die 2D-WDF $f_{\rm xy}(x, y)$ ein und vergleicht die Koeffizienten, so erhält man folgende Bestimmungsgleichungen für $σ_x, σ_y$ und $ρ_{xy}$ bzw. für $σ_ξ, σ_η$ und $ρ_{ξη}$:
$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2} = \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\cos^2 (\beta)}{\sigma_{x}^2 } + \frac {\sin^2 (\beta)}{\sigma_{y}^2 } - 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot \sigma_{y}}\right ] ,$$ $$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\eta^2} = \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\sin^2 (\beta)}{\sigma_{x}^2 } + \frac {\cos^2 (\beta)}{\sigma_{y}^2 } + 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot \sigma_{y}}\right ] ,$$ $$\frac {\rho_{\xi \eta}}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi\cdot \sigma_\eta}= \hspace{11cm}\\ = \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x}^2 } - \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{y}^2 } + \frac {\rho_{xy}}{\sigma_{x} \cdot \sigma_{y}} \cdot ( \cos^2( \beta) -\sin^2( \beta)) \right ] .$$
Mit diesen drei Gleichungen können die jeweils drei Parameter der beiden Koordinatensysteme direkt umgerechnet werden, was allerdings nur in Sonderfällen ohne erheblichen Rechenaufwand möglich ist. Ein solches Beispiel folgt nachfolgend.